

Report for ARROW Energy Major Pipelines

Initial Safety Management Study

ABP No: 08-GHD-02-0006 REV 0

This document may only be used by GHD's client for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Rev	Authors	Reviewer		Approved for Issue		
No.	Author	Name Signature	Signature	Name	Signature	Date
А	J Doyle	P Wheelwright	PW	B Jinks	BJ	07/09/11
В	J Doyle	P Wheelwright	PW	B Jinks	BJ	19/09/11
С	R Turna	J Doyle	JD	P Nasehmanesh	PN	04/10/11
0	R Turna	J Doyle	Dyle	P Nasehmanesh	a	20/10/11

Contents

Sun	nmary	1
Proj	ect Description	3
2.1	Pipeline	3
2.2	Pipeline Facilities and Stations	5
Loca	ation Analysis	6
3.1	Measurement Length	6
3.2	Location Classes	6
3.3	Location Analysis Results	9
Risk	Identification	13
4.1	Penetration Resistance	13
4.2	No Rupture	13
4.3	Energy Discharge Rate	13
4.4	High Consequence Areas	14
4.5	Environmental and Land Constraints	14
Thre	eat Analysis and Safety Management Study	15
5.1	Overlay Threats	15
5.2	Location Specific Threats	16
5.3	External Interference	16
Prop	posed Pipeline Risk Strategy	17
6.1	Overlay Threats	17
6.2	Location Specific Threats	19
Acti	ons	23
Con	clusions	27
Disc	claimer	28
	Proj 2.1 2.2 Loc 3.1 3.2 3.3 Risk 4.1 4.2 4.3 4.4 4.5 Thre 5.1 5.2 5.3 Proj 6.1 6.2 Acti Cor	 2.2 Pipeline Facilities and Stations Location Analysis 3.1 Measurement Length 3.2 Location Classes 3.3 Location Analysis Results Risk Identification 4.1 Penetration Resistance 4.2 No Rupture 4.3 Energy Discharge Rate 4.4 High Consequence Areas 4.5 Environmental and Land Constraints Threat Analysis and Safety Management Study 5.1 Overlay Threats 5.2 Location Specific Threats 5.3 External Interference Proposed Pipeline Risk Strategy 6.1 Overlay Threats

Table Index

Table 1	Radiation Zones	6
Table 2	Industrial and Heavy Industrial Location Class	11
Table 3	CIC Location Class	11
Table 4	Energy Discharge Rates	14
Table 5	Actions from Workshop	23
Table 6	General Actions	25

Figures

Figure 1 Locations Classes - Visual Guide

Appendices

- A ABP and ASP Pipelines Route Map (for Initial SMS Alignment Rev D)
- B Assumptions for SMS and Conclusion of Preliminary Calcs
- C Workshop Attendance Record
- D SMS Location and Threat Analysis Table
- E Wall Thickness Calculation Report
- F Pipeline Preliminary Walk Through
- G General Action Items Closed Out

1. Summary

It is a requirement of AS 2885.1 to undertake an Initial Safety Management Study (Initial SMS) in the preliminary design phase for a high-pressure gas pipeline. The Initial SMS is conducted in order to determine high consequence events and their proposed controls, and to provide sufficient information to stakeholders in the process of regulatory approvals for the project.

The Initial SMS workshop for the Arrow Bowen Pipeline (ABP) was held on 25 and 26 August 2011 in the Arrow Energy offices in Brisbane. The workshop was attended by the pipeline proponents (Arrow Energy), a GIS operator (Arrow Energy) and pipeline engineers (GHD). The workshop attendance record is attached in Appendix C.

The study was based on the requirements of AS 2885.1 2007. The following parameters were considered for the study:

- Basic pipeline design parameters.
- Location Class assessments including definition of high consequence areas.
- Typical threats in typical locations.
- Location specific threats, particularly in high consequence areas.
- Radiation contours for 4.7 and 12.6 kW/m² in the event of full bore rupture.

The study started with a location analysis, based on pipeline route alignment established on the ABP GIS and various GIS data including aerial imagery and topographic maps of the area along the alignment.

The version of the pipeline route alignment/GIS data that was used for the Initial SMS is referred to as "Revision D".

All KPs determined in the initial SMS workshop are correlated with the "Revision D" alignment, and are referred to as "AB" in the Arrow Energy approved designation.

The location analysis produced a list of features along the route with associated possible threats.

The threats were identified as location-specific, length-specific and overlay threats (which correspond to the whole pipeline route). Possible protective measures (both procedural and physical) and further actions were proposed which would need to be completed and finally determined in the further design and pipeline route adjustment.

The Location Class along the ABP has been designated as predominantly rural (R1).

Due to the presence of a school and kindergarten within the measurement length at AB 465, the location class is designated as T1 with a Secondary location class-Sensitive (S) at this location.

The requirements for T1, S and Industrial locations include compliance to 'no rupture' criteria, considering all identified credible threats, which means installation of no rupture/heavy wall pipe in these areas (refer to Appendix E). The requirements for Heavy Industrial include compliance to no rupture criteria where pipeline failure would create potential for consequence escalation. The SMS concluded that Heavy Industrial locations along the ABP were not of high consequence and as such did not warrant the 'no rupture' criteria.

The major general threats identified in the Initial SMS study include:

- Contour forming for agricultural land.
- Blade ploughing.
- Third party interference by excavation or construction activities.
- Failure of maintenance activities on gas and oil pipelines adjacent to the ABP.
- Mining land subsidence.
- Induced voltages from parallel overhead high-voltage power lines.

The actions resulting from the Initial SMS can be summarised as follows:

- Further investigation of land use in terms of proposed developments, power generating and industrial and mining facilities, in order to determine a potential impact on the pipeline, and assess the consequence of pipeline failure.
- Determine the areas subject to flooding and inundation through further studies and site surveys.
- Further investigate the impact that some overlay threats, in particular blade ploughing and land contouring, may have on the pipeline in order to determine the appropriate protection measures (primarily depth of cover).

The safety management study process will therefore be continued through further design and formalised within the detailed safety management study process.

The future detailed safety management study shall determine exact physical and procedural measures, assess whether these measures eliminate the threat, assign consequence and likelihood values to noneliminated threats, determine the risk ranking and assign appropriate risk treatment actions.

2. Project Description

Arrow Energy (the Principal), is proposing to develop a pipeline network in central eastern Queensland (a copy of the route map is attached as Appendix A) that will deliver coal seam gas from its gas fields in the Bowen and Surat Basins to a proposed LNG facility to be located on Curtis Island near Gladstone.

The proposed network will be approximately 1,200 km long and will incorporate scraper stations and intermediate mainline valves.

A pipeline licence has been granted for the major part of the proposed pipeline from the Surat Basin to the facilities on Curtis Island.

No part of the proposed pipeline from the Bowen Basin has yet been assessed and this preliminary engineering is associated with the full extent of approximately 610 km of pipeline length.

The ABP system will consist of a DN800 (32"), Class 600 buried steel pipeline. For the purpose of the Initial SMS an operational case of a single pipeline, with full capacity/base load being supplied from Bowen, was considered.

This report also considers a possible future upgrade of the ABP to DN1050 (42") pipe diameter and the pipeline design parameters are reflected in section 2.1.1 below.

However the Initial ABP SMS workshop was based on the current DN800 pipeline diameter.

A pipeline schematic drawing and the overall route map are attached in Appendix A.

2.1 Pipeline

The pipeline design parameters listed below are preliminary and are subject to change based on required gas quantities, design work in the future and outcomes from the further detailed safety management studies.

In particular:

- Potential further pipeline route optimisations and adjustments will be considered.
- The pipeline diameter has been nominated as DN800, based on different design flow cases.

For the purpose of the Initial SMS the option of DN800 pipe diameter with maximum allowable operating pressure (MAOP) of 10.2 MPa was used, as it presents a conservative case in terms of radiation contour and energy discharge rate in the event of pipeline rupture.

2.1.1 ABP Mainline

The ABP route runs from near Glenden north of Moranbah to a new Gathering Hub where the ABP intersects with the Arrow Surat Pipeline serving the Surat Basin. Preliminary pipeline design parameters used during the SMS were:

•	Diameter	DN800
•	Pressure Design Factor	0.8
▶	Pipe Grade	API 5L X70

₽	Standard Wall Pipe Thickness R1/R2	10.7 mm (Notes 1, 4)
₽	High Consequence Heavy Wall Pipe Thickness	12.5 mm (Notes 2, 4, 7)
▶	Rail Crossing Heavy Wall Pipe Thickness	14.9 mm (Notes 3 , 4)
▶	Road crossing Heavy Wall Pipe Thickness	13.8 mm (Notes 3, 5 , 4)
▶	Pipeline Assemblies	12.8 mm (Notes 6, 7)
▶	Maximum Allowable Operating Pressure (MAOP)	10.2 MPa
	Length	478 km approx.

₽	Diameter	DN1050 (possible upgrade)
•	Pressure Design Factor	0.8
₽	Pipe Grade	API 5L X70
₽	Standard Wall Pipe Thickness R1/R2	14.0 mm (Notes 1, 4)
₽	High Consequence Heavy Wall Pipe Thickness	14.5 mm (Notes 2, 4, 7)
▶	Rail Crossing Heavy Wall Pipe Thickness	19.6 mm (Notes 3, 4)
₽	Road crossing Heavy Wall Pipe Thickness	18.0 mm (Notes 3, 5, 4)
▶	Pipeline Assemblies	16.8 mm (Notes 6, 7)
₽	Maximum Allowable Operating Pressure (MAOP)	10.2 MPa
•	Length	478 km approx.

For a complete list of assumptions used for the SMS and conclusion of preliminary calculations, refer to Appendix B.

Notes:

1. Based on pressure containment with Fd = 0.8. Occasional vehicle crossings and other criteria not considered.

2. Excludes design for S and T2 areas.

3. Depending on quantities required, consider rationalising the high consequence road crossing and rail crossing heavy wall materials.

- 4. Other wall thickness criteria, such as fatigue, not considered.
- 5. For designated, not occasional crossings.
- **6.** Based on pressure containment with Fd = 0.67.

7. Depending on quantities required, consider rationalising the high consequence heavy wall and pipeline assemblies materials.

2.2 Pipeline Facilities and Stations

The pipeline facilities will comprise the following:

- Mid-point scraper station and main line valves (locations to be determined).
- Custody Transfer Metering Station at the connection to the Gas Gathering Hub.

3. Location Analysis

The location analysis is a structured assessment of the land through which a pipeline passes. The objective is to systematically identify land use and population density, providing important information on any activities that potentially pose a threat to pipeline integrity, and thus present a risk to the asset and/or the community. The location analysis determines the location class for this pipeline.

3.1 Measurement Length

AS 2885.1 requires a "measurement length" to be calculated. The land within a measurement length along the pipeline route is assessed for a particular location class.

The measurement length is the radius of the 4.7 kW/m² radiation contour for a full bore rupture, calculated in accordance with API RP 521. This radiation will cause injury after 30 seconds exposure.

The main determinant of radiation contour is pipeline pressure and pipeline diameter.

The radiation contour has been determined as listed in Table 1 below:

Table 1Radiation Zones

Pipeline	Approximate Radiation Zone (m) for 4.7 kW/m ²
DN800 – 10.2 MPa (Main Line)	1,100
DN1050 – 10.2 MPa (possible upgrade)	1,250

The radiation contour zone of 1,100 m for DN800 and 1,250 m for DN1050 (possible upgrade) has been used for both the mainline and the lateral locations – for consistency. This is a conservative approach, as the laterals are likely to be of smaller diameter.

The gas composition used for the modelling was based on the coal seam methane gas composition provided for the initial SMS for the SGP.

3.2 Location Classes

Location classes as specified in AS 2885.1 Clause 4.3.4 and Clause 4.3.5 are defined below.

3.2.1 Primary Location Class

The pipeline route shall be classified into one of the Primary Location Classes R1, R2, T1 and T2 as defined below.

RURAL (R1): Land that is unused, undeveloped or is used for rural activities such as grazing, agriculture and horticulture. Rural applies where the population is distributed in isolated dwellings. Rural includes areas of land with public infrastructure serving the rural use; roads, railways, canals, utility easements.

RURAL RESIDENTIAL (R2): Land that is occupied by single residence blocks typically in the range 1 ha to 5 ha or is defined in a local land planning instrument as rural residential or its equivalent. Land used for other purposes but with similar population density shall be assigned Rural Residential location class.

Rural Residential includes areas of land with public infrastructure serving the Rural Residential use; roads, railways, canals, utility easements.

NOTE: In Rural Residential societal risk (the risk of multiple fatalities associated with a loss of containment) is not a dominant design consideration.

RESIDENTIAL (T1): Land that is developed for community living. Residential applies where multiple dwellings exist in proximity to each other and dwellings are served by common public utilities. Residential includes areas of land with public infrastructure serving the residential use; roads, railways, recreational areas, camping grounds/caravan parks, suburban parks, small strip shopping centres. Residential land use may include isolated higher density areas provided they are not more than 10% of the land use. Land used for other purposes but with similar population density shall be assigned Residential location class.

HIGH DENSITY (T2): Land that is developed for high density community use. High Density applies where multi storey development predominates or where large numbers of people congregate in the normal use of the area. High Density includes areas of public infrastructure serving the High Density Use; roads, railways, major sporting and cultural facilities and land use areas of major commercial developments; cities, town centres, shopping malls, hotels and motels.

NOTE: In Residential and High Density areas the societal risk associated with loss of containment is a dominant consideration.

In Rural and Rural Residential areas, consideration shall be given to whether a higher location class may be necessary at any location where a large number of people may be present for a limited period.

NOTE: Examples include roads subject to heavy traffic congestion and sports fields.

3.2.2 Secondary Location Class

Location classes S, CIC, I, HI and W are subclasses that may occur in any primary location class. The affected length is generally less than the length of the primary location class. Where the land use through which the pipeline route passes is identified as S, CIC, I, HI or W the requirements of the primary location class (R1, R2, T1, T2) shall be applied together with additional consideration and additional requirements established for the S, CIC, I or W location class, as follows:

SENSITIVE USE (S): The Sensitive Use location class identifies land where the consequences of a failure may be increased because it is developed for use by sectors of the community who may be unable to protect themselves from the consequences of a pipeline failure. Sensitive uses are defined in some jurisdictions, but include schools, hospitals, aged care facilities and prisons. Sensitive Use location class shall be assigned to any portion of pipeline where there is a sensitive development within a measurement length. It shall also include locations of high environmental sensitivity. The design requirements for high density shall apply.

NOTE: In Sensitive Use areas, the societal risk associated with loss of containment is a dominant consideration.

INDUSTRIAL (I): The Industrial location class identifies land that poses a different range of threats because it is developed for manufacturing, processing, maintenance, storage or similar activities or is defined in a local land planning instrument as intended for light or general industrial use. Industrial applies where development for factories, warehouses, retail sales of vehicles and plant predominates. Industrial includes areas of land with public infrastructure serving the industrial use. Industrial location class shall be assigned to any portion of pipeline where the immediately adjoining land use is industrial. The design requirements for residential shall apply.

NOTE: In Industrial use areas the dominant consideration may be the threats associated with the land use or the societal risk associated with the loss of containment.

HEAVY INDUSTRIAL (HI): Sites developed or zoned for use by heavy industry or for toxic industrial use locations shall be considered classified as Heavy Industrial. They shall be assessed individually to assess whether the industry or the surroundings include features that:

- (i) Contain unusual threats to the pipeline, or
- (ii) Contain features that may cause a pipeline failure to escalate either in terms of fire, or for the potential release of toxic or flammable materials into the environment.

Depending on the assessed severity the design, requirements of R2, T1 or T2 shall be applied.

NOTE: In Heavy Industrial use areas the dominant consideration may be the threats associated with the land use or a range of location specific risks associated with the loss of containment.

COMMON INFRASTRUCTURE CORRIDOR (CIC): Land defined as a Common Infrastructure Corridor (CIC), or which because of its function results in multiple (more than one) parallel infrastructure development within a common easement or reserve, or in easements which are in close proximity.

CIC classification includes pipelines within reserves or easements for roads, railways, powerlines, buried cables, or other pipelines.

NOTE: In CIC areas the dominant consideration may be the threats associated with the land use by other infrastructure operators or the higher consequences of loss of containment associated with increased transient population (e.g. roads) or other parallel infrastructure.

SUBMERGED (W): Land that is continuously or occasionally inundated with water to the extent that the inundation water, or activities associated with it, is considered a design condition affecting the design of the pipeline. Pipeline crossings of lakes, estuaries, harbours, marshes, flood plains and navigable waterways are always included. Pipeline crossings of non-navigable waterways, rivers, creeks, and streams, whether permanent or seasonal, are included where they meet the design criterion.

The Submerged class extends only to the estimated high water mark of the inundated area.

NOTE: The Submerged class refers only to onshore pipelines designed to this Part. Submarine or offshore pipelines are designed to AS 2885.4.

3.2.3 Required Protective Measures

The required protective measures for threats are dependent on location class, given in section 5.5.4 of AS 2885.1. This section is reproduced below.

5.5.4 Design for protection—General requirements

The pipeline design shall identify and document the external interference threats for which design for pipeline protection is required. Activities which could occur during the design life of the pipeline shall be considered.

NOTE: For guidance on the definition of design cases for protection, see Appendix D of AS 2885.1 - 2007.

External interference protection shall be achieved by selecting a combination of physical and procedural controls from the methods given in Table 5.5.4(A) and Table 5.5.4(B).

The following shall apply:

(a) A minimum of 1 physical control and 2 procedural controls shall be applied in R1 and R2 location classes.

(b) A minimum of 2 physical control and 2 procedural controls shall be applied in T1 and T2 location classes.

(c) For each control, all reasonably practicable methods shall be adopted.

(d) Physical controls for protection against high powered boring equipment or cable installation rippers shall not be considered absolute.

(e) In CIC location class, agreements to control the activities of each user shall be implemented with other users of the CIC wherever possible.

The adoption of minimum requirements for pressure design wall thickness, depth of cover and marking shall not be assumed to constitute design for protection.

The effectiveness of each external interference protection design shall be reviewed by a safety management study validation workshop.

3.3 Location Analysis Results

In the course of Initial SMS, a Location Class has been assigned to the areas along the pipeline route. The indicative pipeline route map is shown in Appendix A.

The SMS Location and Threat Analysis Table, attached as Appendix D, comprises the initial location analysis for the ABP pipeline route, and identifies particular features along the route such as isolated houses, road crossings, industrial developments, sensitive use locations, etc.

Locations along the pipeline are further defined in the SMS Table as one of the following:

- Point relates to the specific location on the pipeline, isolated school, road crossing or powerline crossing etc.
- Length relates to an interval of the pipeline route, such as residential area, farming/agricultural land, pipeline running parallel to power lines, etc.
- **Overlay** associated with the very long section of the pipeline or over the entire pipeline.

Location Class is normally assigned with lengths, or with a single feature which due to change of location class (and requirement to extend more conservative into less conservative location class) has been spread to the length.

The Location Class designation along the ABP route is summarised below.

3.3.1 R1

The majority of the ABP route is classified as R1 – Rural. This includes land used predominantly for grazing and to some extent for agricultural activities. At some sections of the route presence of isolated dwellings (typically 3-5 dwellings per kilometre of pipeline length) was determined. The presence of isolated dwellings does not alter the Location Class (refer Sec 3.2.1 for definition of R1), but has been considered in the route selection as much as practically possible.

3.3.2 R2

Two sections of pipeline have been identified as R2 Location Class.

The first section (AB 391 onwards) is due to rural residential development in the vicinity of the pipeline.

The second section refers to common corridors that intersect the AB pipeline. Potential threats to the pipeline associated with these corridor sections will be further investigated.

- SGIC at AB 418 to 469.5
- GSDA at AB 469.5 to 478
- Marlborough Nickel Corridor AB 329 to 407.9

3.3.3 Industrial and Heavy Industrial

Sections of the route near existing and future substations, active coal mines and from AB 391 generally to the end of the pipeline (through Gladstone industrial area) have been classified as R1-Industrial and Heavy Industrial as listed in the Table 2.

Location Class	Comment
R1 - I	Future and existing substations
R2 - I	Small Industry
R1 – HI (not high consequence)	Active mine (coal)
R1 – HI (not high consequence)	Adjacent active mine (salt)
R2 – HI	Potential future use of GSDA
	R1 - I R2 - I R1 – HI (not high consequence) R1 – HI (not high consequence)

Table 2 Industrial and Heavy Industrial Location Class

3.3.4 T1 – Sensitive Use

A section of the route at the township of Raglan (AB 446 to 469), with residential areas and a state primary school within measurement length of the pipeline (AB 465) is classified as T1-Sensitive Use.

3.3.5 CIC - Common Infrastructure Corridor

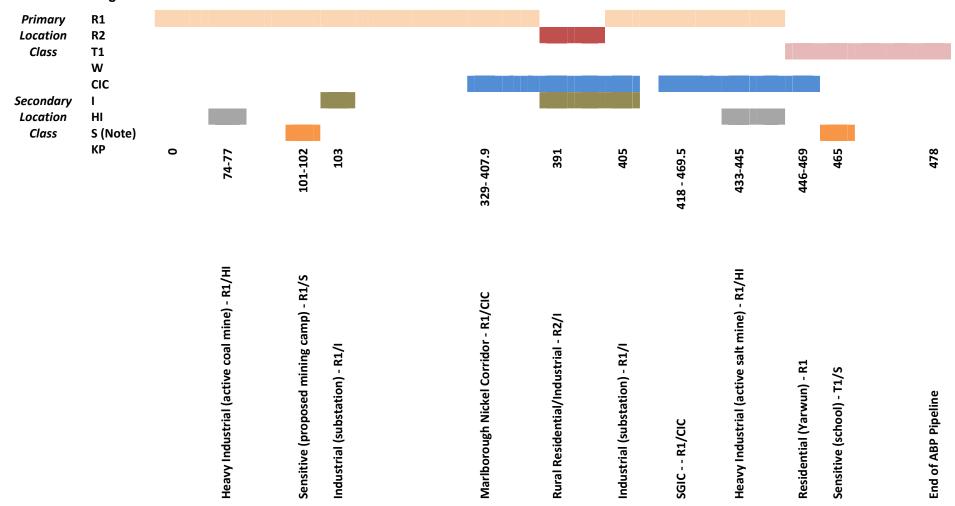

The areas where the pipeline alignment is in parallel with the existing and future pipelines (designated government Stanwell Gladstone Infrastructure Corridor downstream of Gracemere have been designated as CIC Location Class as summarised in Table 3 below. These sections will be further investigated for declared CIC projects and considered in the Detailed Safety Management Study.

Table 3CIC Location Class

Chainage (KP)	Location Class	Comment
AB – 418 to 469.5	CIC	SGIC
AB – 329 to 407.9	CIC	Marlborough Nickel Corridor

Figure 1 - Locations Classes - Visual Guide

12

Note: The ability to define S (and other location classes) at the ISMS stage depends on the available land use / GIS data collected by the Project.

08-GHD-02-0006 - Arrow Energy Major Pipelines - Initial Safety Management Study

4. Risk Identification

4.1 Penetration Resistance

Pipe wall thickness provides a resistance to penetration from an external interference threat. The level of pipeline protection by resistance to penetration depends on the pipe wall thickness, material strength and the physical parameters of the external interference threat.

Based on the input from the field it was determined that the maximum size of excavator that presents a realistic threat from excavation for non-pipeline projects or work under control of third parties is a 35 tonne excavator. The "non-pipeline projects or work under control of third parties" refers to excavation activities on the farms such as watering dam excavation, installation of drains or buried water PE lines, installation of other services by third parties, and similar. Refer to Section 5.3 for further details about possible use of other excavators or other external interference threats.

Penetration resistance calculations have been carried out to assess penetration resistance for the DN800 pipeline (current design case), and are provided in the attached wall thickness calculation report (Appendix E).

4.2 No Rupture

The measurement length defines an area around the pipeline that is to be assessed for consequences of loss of pipeline containment, whether from a "leak" or a "rupture". The general land use, the presence of residential areas, sensitive locations (schools, day care centres, hospitals, prisons, aged care facilities and similar) are determined and the appropriate location class assigned.

The pipeline within a High Consequence Area (T1, T2, I and S location classes) must be designed for 'no rupture' so that a rupture is not a credible failure mode. 'Rupture' in this context refers to a full-diameter breach of the pipeline, or a ductile fracture, arrested within the initiating pipe that results in two open pipe ends releasing gas. 'No rupture' compliance as per AS 2885.1 requirements is achieved by either:

- 1. Applying extra heavy wall pipe, so that the hoop stress does not exceed 30% of SMYS, or;
- 2. Determining the hoop stress such that that the "critical defect length" is less than 150% of the largest equivalent defect length identified in that location.

It needs to be verified whether the 35 tonne excavator is the largest credible threat overall, specifically in the high consequence areas. This will be done in the process of further design and in the process of conducting the detailed safety management study.

4.3 Energy Discharge Rate

In addition to the no rupture requirements, AS 2885.1 sets maximum allowable energy discharge rates. These rates must not exceed 10 GJ/s in Residential (T1), and Industrial locations (I), or 1 GJ/s in High Density (T2) and Sensitive (S) Locations.

Energy discharge rates have been calculated and are listed in Table 4.

Table 4	Energy Discharge Rates
---------	------------------------

DN 800 and DN 1050 Pipeline Case (10.2 MPa)
46 mm hole
144 mm hole

Refer to the attached wall thickness calculation report (Appendix E) for a complete summary of the resistance to penetration calculation.

In order to confirm whether the energy discharge criteria are met for the T1, I and S Location Class, the threats that could create a hole in the pipe bigger than specified in Table 4 needs to be further investigated and the resulting risks need to be thoroughly evaluated in a Detailed SMS.

4.4 High Consequence Areas

"High consequence" areas are locations where pipeline failure can be expected to result in multiple fatalities or major environmental damage. For ABP, all the areas designated as T1 (residential), I (industrial), and S (sensitive) are high consequence areas.

The route changes in the future are possible, and more detailed investigation during the design process will confirm the presence of features such as nursing homes, schools, day care centres and similar which may convert some areas into S location class.

The protection measures assigned to all high consequence areas are increased depth of cover (1,200 mm) and heavy wall pipe.

4.5 Environmental and Land Constraints

The areas of environmental and land constraint have been investigated and mapped within the GIS. No major environmental or land constraints have been determined during the Initial SMS, as apparently the areas of concern have been avoided by careful route planning.

5. Threat Analysis and Safety Management Study

A comprehensive list of threats has been produced through the Initial SMS taking into consideration previous experience and through the location analysis, using all available data and input from those who have been investigating the proposed pipeline route in the field.

These threats will ultimately be associated with each and every location, as determined in the location analysis. The Detailed SMS will then determine whether there are sufficient physical and procedural measures in place to eliminate the threat, depending on the location class.

The typical overlay and location-specific threats have been identified in the course of location analysis as shown in the SMS Location and Threat Analysis Table attached in Appendix D.

Overlay threats apply uniformly along the pipeline, whilst location specific threats are related to a point location or a section ("length") of the pipeline.

The threats can be also distinguished as either "design" or "external interference" events. The term "design" should be interpreted very generally to mean all non-interference events (including operations). It should not apply only to those items related to the engineers' design.

The external interference events present the greatest danger to the pipeline, as statistically most pipeline failures are as a direct result of external interference.

Furthermore, preliminary protection measures have been assigned in order to reduce all identified risks to an acceptable level. This is the first step in the formal SMS. In the course of detailed design, this process needs to be taken to the further level, which includes the detailed identification of threats, evaluation of consequence and likelihood of pipeline failure, and formal ranking of risk and effectiveness of proposed protection measures.

5.1 Overlay Threats

Listed below are some typical overlay or general threats from the complete listing:

- Corrosion external and internal;
- Stress corrosion cracking;
- Inadequate or incomplete maintenance;
- Inadequate testing and inspection;
- Undetected damage to pipe, coating or equipment;
- Undetected critical weld defects;
- Excavation of an existing pipeline or other service for maintenance or installation;
- Terrorism, sabotage and vandalism; and
- Fencing.

5.2 Location Specific Threats

Listed below are some typical location specific threats, from the complete listing:

- Excessive external traffic loads;
- Construction of other pipelines in Stanwell Gladstone Infrastructure Corridor;
- Floods erosion of cover;
- ▶ Floods floatation;
- Pipeline scouring;
- Table drain and road grading, and road maintenance;
- Excavation of existing pipeline by third party;
- Induced voltages from parallel power lines;
- Quarry blasting;
- Mining land subsidence;
- Train derailment; and
- Earthquake.

5.3 External Interference

External interference represents the most serious threat to most pipelines. Examples of external interference threats include:

- Blade ploughing;
- Table drain and road grading, road maintenance;
- Excavation by third party for farming activities;
- Installation of third party services;
- Road construction; and
- Contour drain forming using bulldozers or graders.

6. Proposed Pipeline Risk Strategy

This section outlines the current risk mitigation strategies that are proposed for the threats that have been identified as a result of the Initial SMS. The measures indicated are proposed to reduce the risk of the listed threats occurring to an acceptable level.

For the purpose of this Initial SMS the threats and the proposed protection measures are previewed and summarised only in the following section.

6.1 Overlay Threats

6.1.1 Excavation of an Existing Pipeline by Third Party

Excavation around the pipeline by third party for non-pipeline projects, or work under control of third parties, refers to excavation activities on the farms such as watering dam excavation, excavation for new drains, existing drains maintenance, installation of buried water PE lines; or it refers to other third party work such as installation of other utility services by third parties, maintenance of existing utility services and similar.

Excavation presents a threat by puncturing the pipeline with an excavator bucket. The maximum credible size of the machinery used by a third party has been identified as a 35 tonne excavator fitted with penetration teeth. More destructive plant such as excavators greater than 55 tonnes (normally used in mines) is considered to be significantly rarer if not unlikely threats for these types of works.

The 35 tonne excavator fitted with penetration teeth would not penetrate either heavy or standard wall pipe.

The pipeline will be monitored for third party work occurring along the right of way on a regular basis. Pipeline marker signs will be installed at inter-visible intervals to indicate that there is a buried gas pipeline. The signs will also show the operator's phone numbers so that contractors etc. can ring prior to commencing work or in case of an emergency. The stakeholders along the pipeline will be contacted regularly and will be supplied with maps to ensure that they have the necessary information at hand to identify the location of the pipeline.

Where the pipeline crosses third party services, the pipeline will generally pass under the other service, Marker tape and marker mesh will be installed across the pipeline to provide an indication for gas pipeline, and installation of concrete slab installed above the pipeline to provide a physical barrier will be considered.

6.1.2 Corrosion – Internal

The gas entering the pipeline will be dehydrated to the transmission gas specification requirements, which will ensure that free water will not enter the pipeline. The current gas composition has no components which could initiate internal corrosion without water.

6.1.3 Corrosion – External

The pipeline will be coated with a high integrity protective coating as its primary protection from external corrosion. This protective coating will be reinforced by a cathodic protection (CP) system, using an

impressed current or sacrificial anode system. The CP system will be monitored as part of the pipeline management system to ensure that the correct negative potential is maintained along the pipeline. CP test points will be located at critical crossings, and at regular intervals to assist with monitoring performance.

6.1.4 Incorrect Construction, Testing and Inspection

The pipeline will be tested and constructed in accordance with AS 2885.1. The pipeline may be constructed in an alliance or similar contractual arrangement to ensure that a balance between cost and quality imperatives is maintained. The pipeline will be constructed from API 5L line pipe and therefore will undergo extensive non-destructive testing. The pipeline will be constructed in accordance with a total quality control plan including Non Destructive Testing (NDT), welding and holiday detection of the coating. After installation, the pipeline will be hydrostatically tested in accordance with AS 2885.5.

6.1.5 Inadequate or Incomplete Maintenance

The pipeline will be maintained in accordance with AS 2885.3. This involves using a pipeline integrity management plan and a Safety and Operating Plan. Pipeline operations will follow the requirements of these plans, including scheduled maintenance and pipeline integrity checks, such as coating surveys and intelligent pig runs. The pipeline and facilities will be operated by experienced and competent operators who are familiar with the operation and the maintenance of the equipment being used.

6.1.6 Terrorism

In the light of the current political climate globally and in Australia, the possibility of a terrorist act cannot be dismissed. A terrorist act on a pipeline may occur in a rural area if the objective is to interrupt supply, and to escape apprehension. It is presumably less likely that an attack would occur in a heavily populated area, since detection is more likely. Another factor is that it takes time to expose and damage a buried pipeline, and presumably terrorists would have little time (before detection) if working in a populated area.

Pipeline stations present a potential target as the high-pressure gas equipment is above-ground, albeit protected by a fenced compound. Again, it is considered more likely that such a site would be attacked when it is unattended. The mitigation measures will be the restriction of access to pipeline stations and facilities by security fencing and intruder alarms and by patrolling the pipeline.

6.1.7 Sabotage, Vandalism and Malicious Damage

As the pipeline is buried along its entire route and is fairly remote, the likelihood of potential deliberate sabotage is reduced. The main areas of higher risk are the pipeline stations. Compared with terrorism, vandalism is anticipated to have lesser consequences, although frequency would be higher. Locations chosen for the above ground facilities will consider visibility and access. The metering stations are likely to be fitted with intruder alarms to indicate unauthorised access.

6.1.8 Stress Corrosion Cracking (SCC)

SCC occurs generally downstream of compressor stations, where the pipeline is subjected to a high stress range and high temperature. The risk of SCC occurring on the pipeline will be comprehensively evaluated and specific measures may need to be implemented. These may include specific joint coatings, sections of heavy wall pipe, or a more extensive coating inspection and maintenance program.

6.1.9 Earthquake

Operating experience has shown that buried gas pipelines are particularly resistant to earthquake forces.

The route will be reviewed to determine areas of especially high acceleration coefficient, and intersection with faults (as per AS 1170). Where faults are encountered, correlation will be sought with recent seismic activity to determine whether the fault should be classified as active.

Where positively active faults are intersected, precautions such as heavy wall pipe or above-ground roller-supported pipe will be considered.

6.2 Location Specific Threats

6.2.1 Mining Land Subsidence

Areas subject to ground movement are primarily the areas in the mining leases, in particular where long wall mining and underground coal gasification (UCG) is anticipated. These areas have been avoided by pipeline route selection where it was feasible; however the pipeline traverses mining leases at some locations (AB 74 to 77, EL 3 to 6, DL 7.3 to 14.1, SL 3.1 to 6.7). The likely extent and magnitude of land subsidence needs to be established by liaising with the miner, in order to either avoid the land subsidence areas by further route adjustments or assess what design options could be implemented to accommodate for subsidence of certain magnitude.

6.2.2 Construction of Other Pipelines in Gladstone State Development Area

It is very likely that at least one other large diameter high pressure gas pipeline will have been installed in government Gladstone State Development Area (GSDA) near Gladstone, parallel to the ABP. Given the diameters of these pipelines, the size of the excavating machinery for maintenance of this type of works could well be in the order of 80 or 90 tonne. The data for this type of the machinery needs to be gathered and assessed for penetration resistance as they are not specified in AS 2885.1. However it has been assessed that in this case it can be relied to a significant extent on procedural methods, such as site supervision and work permit system, for the protection of the pipeline. This is because the construction of the other pipelines is anticipated to be happening in the time period before the ABP is installed, therefore there will be general awareness of both the ABP installation and of other projects (due to their size), and accurate GIS data on the ABP location will be available.

6.2.3 Blade Ploughing

The location analysis indicates that blade ploughing is likely to occur in multiple long sections of the pipeline route. Blade ploughing is a land clearing activity carried out periodically to control the regrowth of native vegetation, generally to a depth that does not exceed 300-400 mm. However, the blade plough can penetrate deeper at some locations because of uneven terrain, localised washouts, melon holes etc.

In areas that may be subject to blade ploughing, now or in the future, the pipeline is proposed to be buried with a cover of 1,200 mm. In order to confirm the realistic depth of cover that would provide adequate protection against blade ploughing, the threat of blade ploughing needs to be further investigated to more accurately determine what is the maximum depth that a blade plough could penetrate.

6.2.4 Contour Forming

Land contour forming for agricultural purposes has been identified in some areas. At quite a few locations along the route this threat is considered as co-existent with blade ploughing.

Contour forming is normally carried out by a bulldozer and grader, to a depth on occasions beyond 700 mm. The areas where contour forming is regarded as possible have been initially identified, and need to be further confirmed through site surveys, landowner liaison or other methods. The proposed protection measure is an increased depth of cover of 1,200 mm, to ensure that it is not affected by contour forming or maintenance. Further investigation of the contour forming threat is required in order to confirm the realistic depth of cover that would provide adequate protection.

6.2.5 Induced Voltages

The location analysis has identified several areas where the pipeline alignment is parallel with high voltage power lines for some distances, for example at AB 81 to 85.6, AB 462.9 to 464 and EL 47 to 48.5. Where this occurs, a study will be performed to calculate the effect of the induced voltage and the fault current on the pipeline during detailed design. Design measures will be implemented, as required, to ensure continued pipeline integrity and operator safety.

The pipeline has been located, as far as practicable, to avoid parallel railway lines, and therefore to avoid potentially serious induced voltages and fault currents. If proximity is unavoidable, suitable mitigation such as installation of monolithic insulation joints, and other measures will be employed to ensure the continued integrity of the pipeline and its cathodic protection system.

6.2.6 Failure of Control and Protective Equipment

The design intention is for pipeline and station pressure control systems to be high integrity, with full redundancy. The pipeline may be protected from high temperature by a shutdown system.

The design philosophy at the meter station will incorporate dual regulator runs to minimise the possibility of supply interruption from a single component failure.

6.2.7 Excessive External Traffic Loads

Several types of road crossing were identified in the location analysis. These are:

- Formed gravel,
- Unformed dirt,
- Bitumen,
- Paper roads (road casements without a gazetted road), and
- Landholders' access tracks.

These crossings will be designed with additional cover, heavy wall pipe and concrete slabs within table drains, as per the standard crossing design.

To ensure that the pipelines cannot be overloaded in these locations, the depth of cover will be checked as specified in AS 2885.1, i.e. in accordance with the requirements of API Recommended Practice 1102 "Steel Pipelines Crossings - Rail, Roads and Highways". The loads used in the calculations will be the maximum allowable axle loadings in accordance with the requirements of the Department of Main Roads.

6.2.8 Floods - Erosion of Cover

Erosion of cover is also possible at creek and river crossings, especially on the banks. For the majority of the creek and river crossings, increased depth of cover of 1,200 mm and 2,000 mm respectively will be used and protection measures installed on the banks as required by the crossing design.

6.2.9 Floods – Floatation

The low lying areas identified in the location analysis as prone to flooding may require buoyancy control measures. These measures would include extra depth (1,200 mm), concrete coating of the pipeline, seton weights, or other buoyancy control measures to ensure that the pipe is negatively buoyant.

Flood areas will be determined in the further investigation and considered in the design.

6.2.10 Pipeline Scouring

The location analysis does not identify specific locations currently susceptible to scouring, however where these areas are identified during design and construction, trench breakers will be installed to prevent tunnelling of water and contour banks will be used to divert flows away from the pipeline onto undisturbed areas.

6.2.11 Train Derailments

Sections of the route where the pipeline runs parallel with or crosses, a rail line will be installed generally with additional depth of cover, using heavy wall pipe. Rail crossings will be carried out by thrust boring or horizontal directional drilling and will be at an increased depth of cover as specified in AS 2885.1 i.e. in accordance with the requirements of API Recommended Practice 1102 "Steel Pipelines Crossings – Rail, Roads and Highways". The proposed design is a minimum depth of cover of 2,000 mm under the table drain, which will prevent possible contact during a derailment.

6.2.12 Table-Drains, Road Grading, and Road Maintenance

As mentioned above, standard construction methods are to be used across roads. These standard construction details include concrete slabs under the table drains to prevent accidental over-excavation above the pipeline. The pipeline is also buried with additional cover, and pipeline marker tape is installed, across the road reserve.

6.2.13 Quarry Blasting

The pipeline passes close to some currently operating quarries. Blasting studies and calculations, for some recently completed pipelines, indicated that separations as small as 50 m between explosive charges up to 200 kg, and pipelines, are adequate to ensure that the pipeline is not damaged. It is therefore considered likely that the pipeline route will be able to be easily adjusted to bypass quarry areas and maintain the necessary separation. This will be reviewed during detailed design.

7. Actions

During the course of the Initial SMS, actions were identified to either confirm conditions along the route, investigate risk elimination by realignment of the route, confirm the presence of sensitive areas or nearby facilities, and further investigate the likely consequence of some external interference threats.

This will be done in preparation for the Detailed SMS, in order to confirm the designated Location Class, determine threats to a further level of certainty and detail, propose required protection and mitigate risks to the lowest practical level. The outstanding actions that need to be addressed are listed in Table 5 and Table 6.

Chainage (KP)	Threat Description	Action	Close Out
Powerline crossings AB 70.1, 76.9, 77.9, 81 to 85.6, 253.5, 303.8, 354.6, 462.9 to 464	Fault to earth - electrocution	Check radius of effect of earth faults - does it affect the pipeline.	
EL 13, 47.7, 47.8 to 48.5			
Active mine (coal) AB 74 to 77, EL 3 to 6 SL 3.1 to 6.7 DL 7.3 to 14.1	Vibrations from blasting	Check with the coal mining companies with respect to potential blasting.	
SGIC at AB 418 to 469.5 GSDA at AB 469.5 to 478 Marlborough Nickel Corridor AB – 329 to 407.9		Check declared CIC projects with interests.	
Typical parallel water pipeline AB 90 to 93	Vehicle loads during maintenance activities	Make sure the fence is specified in the licence agreement.	
*Cleared areas - purpose unknown AB 0 to 478 (all), EL 37 to end of lateral	Blade ploughing	Review previous study by GHD on depth of blade ploughing to see whether 1,200 mm is enough.	
Possible cultivation AB 159 onwards, AB 172 to 174, AB 211 onwards, DL 0 onwards	Blade ploughing	Review previous study by GHD on depth of blade ploughing to see whether 1,200 mm is enough.	

Table 5Actions from Workshop

Chainage (KP)	Threat Description	Action	Close Out
Centre pivot irrigation to grow vegetation	TBC	Determine method and depth of tillage for centre pivot irrigation.	
AB 244 to 245			
Contour banks (may be extended)	Damage to pipe	Determine the depth required for contour banks.	
AB 311, AB 318 to 319, AB 343 to 344, AB 358 to 359, AB 372 to 373			
Possible flood plains	Inundation with	Carry out appropriate geotech	
AB 320 onwards, AB 428 onwards, EL 29	simultaneous liquefaction	study.	
Entire length	Material Defects	Require contractor to demonstrate minimised and careful handling of coated pipe.	
Entire length	Hydrotesting issues and 0.8 design factor issues	Make sure pipe spec captures recent industry lessons learned on items such as stress-strain curves, coating process, strain ageing, yield ratio, field weldability (all tests done on coated pipe).	
		Consider the initial additional impact of spiral welded pipe.	
Entire length	Coating damage in general	Ensure spec prescribes the use of brush type jeeper.	
Entire length	Undiagnosed welding defects due to poor NDT	Baseline calibration of AUT.	
Entire length	Cyclic fatigue of pipeline due to operation of upstream gathering system and downstream LNG plant	Confirm that cyclic operation does not give rise to fatigue design on the pipeline.	

*Note: Identified cleared areas with the 'purpose unknown' differ from identified areas where cultivated land was evident.

able 6	General Actions	
Item #	Action	Assigned To
1	Railway depth of cover - measured from bottom of ballast?	GHD
2	Specify minor and major watercourse crossings in the pipeline walk through	GHD
3	Investigate possible third party CSG well at AB 89.	Arrow
4	Investigate land use in area at AB 95 to 97, AB 98 to 100, AB 107, AB 133 to 137, AB 244 to 245 and check whether cleared area will be expanded with land owner.	Arrow
5	Determine type of pipeline in easement at AB 96.8 approx.	Arrow
6	Investigate the type of mining and mining methods at AB 227 to 228.	Arrow
7	Investigate potential contour banks at AB 299 to 300, AB 319.	Arrow
8	Investigate possible easement at AB 303.5.	Arrow
9	Investigate cadastral portion at AB 364.	Arrow
10	Investigate nature of structure/dwelling at AB 371.5.	Arrow
11	Investigate nature of dwelling at SW of AB 373.	Arrow
12	Check with local council the zoning at AB 380 to ensure that density does not increase further.	Arrow
13	At AB 383 dwelling within 100 m of centreline, investigate moving the dwelling or the pipeline route.	Arrow
14	Investigate structure/ruin at AB 386.5	Arrow
15	Investigate at NE of AB 397 looped track, is this a commercial enterprise.	Arrow
16	Investigate AB 410.7 possible quarry. Is future quarry intended?	Arrow
17	At AB 433 determine possible future extensions to salt mining.	Arrow
18	At AB 446.3 waste transfer station needs to be relocated. Pipeline cannot be relocated due to SGIC.	Arrow
19	Check at AB 445.5 to 446.5 (the reserve) what land use approvals are required for this apparent break in the SGIC.	Arrow
20	Investigate at SW AB 446. Are these ponds/sewerage plants or what?	Arrow
21	Investigate at AB 454 - 455 the number of houses/occupants in this town/village.	Arrow
22	Calculate the overlap of measurement lengths in T1 and sensitive location class zones.	GHD

		Assigned To	
23	Investigate the feasibility of medium/heavy vessel making it up major rivers far enough to damage pipeline.	Arrow	
24	Investigate operating pressures for slurry pipelines to further consider threats posed to adjacent gas pipelines.	GHD	
25	GHD to determine frequency of DCVG surveys for detecting latent defects from third party impact.	GHD	
26	Determine the probability of blasting.	Arrow	
27	Try to find photo of lightning strike - Brian Martin, EPRA papers.	GHD	
28	Send sketch showing current MLV locations to GHD.	Arrow	
29	Ground truth between EL 8-9.	Arrow	
30	Confirm existence of well at EL 30 and evaluate if too close to the pipeline.	Arrow	
31	At EL 46 realign pipeline slightly to avoid mining township (if required once measurement length of EL is confirmed).	Arrow	
32	Check the proximity of wellheads at DL 3, 3.5, 6.7.	Arrow	

8. Conclusions

The scope of the Initial SMS for ABP was as follows:

- Identification of basic pipeline design parameters.
- Location analysis, including definition of "high consequence" areas.
- Identification of typical overlay general threats.
- Identification of main location specific threats.
- Preliminary proposed risk strategy to reduce all identified risks to ALARP.

The scope has generally been fulfilled and the results of the Initial SMS workshop summarised in the SMS Location and Threat Analysis Table in Appendix D.

In the course of the Initial SMS, a significant number of issues were identified that require further investigation or action. These can be summarised as follows:

- Confirmation of conditions along the route;
- Investigation of extent of flooding areas;
- Confirmation of presence and extent of sensitive areas; and
- Further investigation of some major external interference threats in order to determine optimum protection measures.

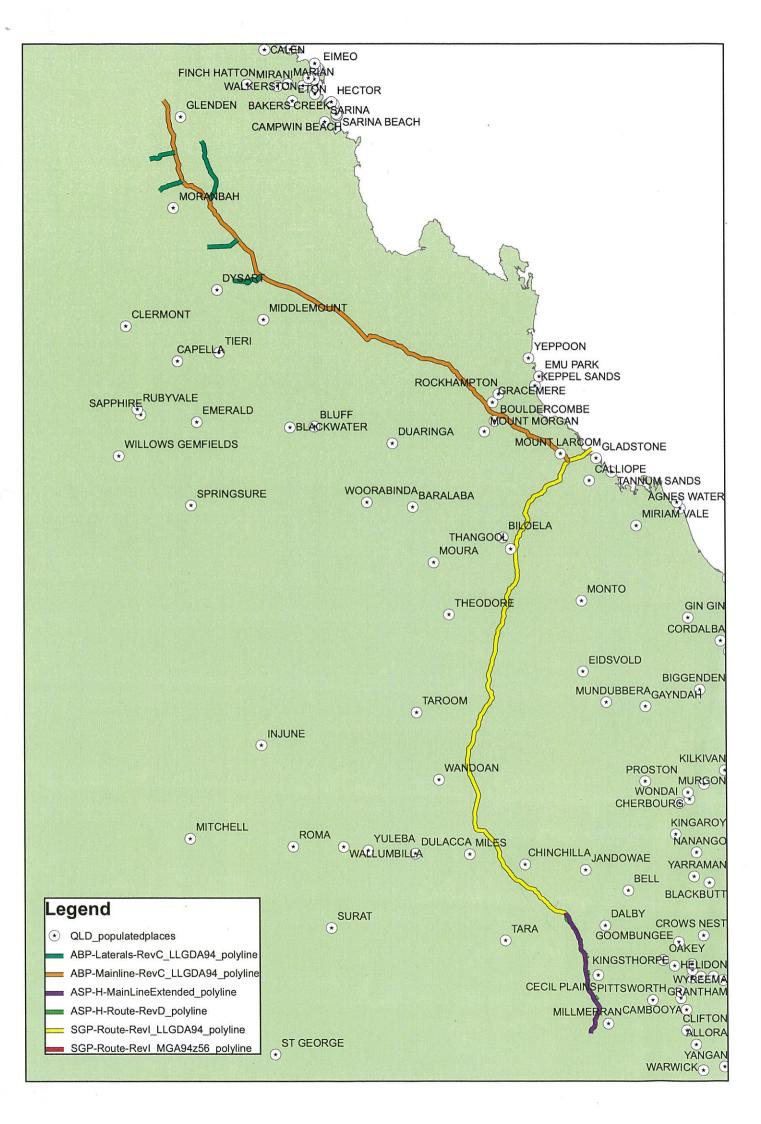
These actions are noted in the SMS Location and Threat Analysis Table and the separate comprehensive list of actions has been presented for clarity in Section 7 of this Report.

The pipeline route that was assessed in the course of the Initial SMS is referred to as Revision D. The indicative map of the route is provided in Appendix A. Any changes in the route that may occur after the Initial SMS workshop will need to be evaluated. The SMS process will therefore be continued through further design and formalised by conducting a detailed SMS.

The detailed SMS shall determine the exact physical and procedural measures required to mitigate threats, assess whether these measures eliminate the threat, assign consequence and likelihood values to non-eliminated threats, determine the risk ranking and assign appropriate risk treatment actions.

9. Disclaimer

This Report: has been prepared by GHD for Arrow Energy Pty Ltd and may only be used and relied on by Arrow Energy Pty Ltd for the purpose agreed between GHD and Arrow Energy Pty Ltd as set out in Section 1 of this Report.


GHD otherwise disclaims responsibility to any person other than Arrow Energy Pty Ltd arising in connection with this Report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this Report were limited to those specifically detailed in the Report and are subject to the scope limitations set out in the Report.

Appendix A

ABP and ASP Pipelines Route Map (for Initial SMS – Alignment Rev D)

Appendix B

Assumptions for SMS and Conclusion of Preliminary Calcs

ABP Pipeline

Assumptions for SMS and Conclusion of Preliminary Calcs

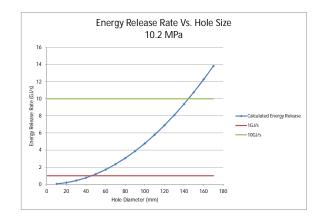
High level assumptions:

- Stations and facilities not considered.
- Construction not considered except for construction adjacent to operating pipeline.
- Assumed homestead within measurement lengths are not treated as sensitive
- Assumed all pipelines and laterals are piggable

		Comments
Pipeline Nominal Diameter	DN 800 (32 inch)	
Pipe Material	API 5L X70	
Pipeline Length	478 km approx.	
Pipeline Contents	CSM	
	Methane - 98.45%, Ethane (0.10%),	
	Propane (0.10%), i-butane (0.10%), n-	
	butane (0.10%), i-pentane (0.10%), n-	
	pentane (0.10%), Hexane (0.10%),	
Rich Gas Composition	Nitrogen (0.70%), Carbon Dioxide	
(assumed)	(0.15%)	As per SGP Design Basis
Primary Location Classes	R1	
Along Route Secondary Location Classes		
Along Route	твр	
, nong nouno	0.8 Pipeline	
Design Factor	0.67 Facilities	
Corrosion Allowance	0 mm	
External Threats / Plant in the		
Region Is "NO RUPTURE" Desian	Refer to SMS	
Required ?	Yes in high consequence areas	
Can rupture occur? If so, for	No for up to 35T excavator, assuming	
what size plant?	heavy wall pipe used	
Permissible Energy Release		
Rates in Each Location Class	High Consequence - 10GJ	
Calculated Energy Release		
Rate	No Leak	
Measurement Length		
(4.7kW/m2) (injury in 30 secs exposure)	1100 m approx.	
Largest excavator size		
considered (design excavator)	35Т	
Worst case tooth	Twin Tiger (one tooth)	
Are the Nominated Excavators	No - standard wall	
Capable of Achieving "Leak"?		
*		
Are there any "non-excavator"		
Threats/ Plant Capable of		
Achieving Rupture ?	Yes refer to SMS	

. F	Preliminary Depth of Cover Selections		
Area/ Feature	DOC (minim	um)	
R1 and R2 Areas	750mm		
High Consequence Areas (exl. T2)	1200mm (TBD)		
W Areas	TBD		
Track - Open Cut	1200mm		
	Crossing Cover	1500mm	
Road - Bored	Table Drain	1200mm	
	Concrete Slabs in Drain	No	
	Crossing Cover	1500mm	
Road - Open Cut	Table Drain	1200mm	
	Concrete Slabs in Drain	No	
	Crossing Cover	2000mm	
Highway Crossing	Table Drain	2000mm	
-	Concrete Slabs in Drain No		
Legal Planned Road Reserve/ Crossing	1200mm		
Water Course - Minor (<10m toe to toe)	Crossing Cover	1200mm	

Water Course - Major	Crossing Cover	2000mm	
Beilinen	Crossing Cover	2000mm	
Railway	Table Drain	2000mm	
Foreign Utility	Normally cross below foreign utility, as opposed to above.	600mm	
Foreign Utility - Above Ground	As per surrounding area		
HV Power Line Crossing	As per surrounding area		
Man Made Drain	1200mm		
Parallel to Road	Underneath Road	1500mm	
Parallel to Road	Beside	1200mm	
HV Power Line Parallel	As per surrounding area		
Fibre Optic Parallel	As per surrounding area		
Flood Plains	TBD		


Preliminary Wall Thickness Selections

R1/R2 "Standard Wall (Note 1)	High Consequence "Heavy Wall"	Road Crossing "Heavy Wall"	0,000	Pipeline Assemblies
	(Note 2)	(Note 5)	(Note 3)	(Note 6)
10.7 mm	12.5 mm	13.8 mm	14.9 mm	12.8 mm
Notes				
1. Based on pressure containment with Fd = 0.8 Occasional vehicle crossings and other criteria not considered.				
3. Depending on quantities required, consider rationalising the high consequence road crossing and rail crossing heavy wall materials. Combine? (Note 3) 4. Other wall high threase cirteria, such as fatloue, heave not been considered.				
 Other wall thickness chiteria. Such as fatigue. h 				

Other wait incidness criteria, such as faligue, ha 5. For designated, not occasional crossings.
 Based on pressure containment with Fd = 0.67.

Appendix C Workshop Attendance Record

Attendance List Arrow Energy ABP Pipeline

Title: Pipeline Risk Assessment Review (SMS) Date: Thursday 25th of August 2011 Venue: Brisbane

Name	Title	Organisation	Signature
Angelo Blords	Pip. Engineer	ARROW	Ar.
Iku Geinnel	ENGENEST, MAN.	teen	lotto
RUBI TURNA	PIPELINE ENG.	GHO	B
TONY MILLS.	CO-FACILITATION	GMD.	for Mills.
STEPHEN CHAN	LIS SParmist	ARROW	al
JACK DOYLE	CU-FACILITATOR	GHD G	
Xia Grang	VP-malorpopel	he. Brrow	Bon
IAIN BURGES	PROJECT MANDER.	Annon	
		ь. -	
2 2			

Attendance List Arrow Energy ASP Pipeline

Title: Pipeline Risk Assessment Review (SMS) Date: Friday 26th of August 2011 Venue: Brisbane

Name	Title	Organisation	Signature
RUBI TURNA	RIPELINE ENC.	Сно	ag .
Jack Dayle	Co-facilitator	6HD C	
Anthony (Tony) Mills	Co-facilitatos	CHD.	EnyMds.
Azeb Velando	Pipe Engineer	ARROW.	(a)
Any Gernal	Dubibalist. Mare	Allon	Leto)
IDIN BURGES	PROJ MONOGER	Amon	
			0
		-	
	95 ⁷		
2			
	942 mar - 20		
-			

Appendix D SMS Location and Threat Analysis Table

			Dimensions	Severity Catastrophic	Major	Severe	Minor	Trivial		Risk Ranking	Catastrophic	Major	Severe	Minor	
Initial SMS Work			People	Multiple fatalities, or	Several fatalities or major injuries, or	Hospital treatment, or	Pirst Aid Treatment, or	"Minimal"		Frequent	Extreme	Extreme	High	Intermediate	
Project:	AB Gas Pipe Alignment	line to Rev D	Supply	ong supply interruption, or	restricted supply, or	Short interruption o prolonged restriction, or	f Short supply restriction, or	No impact on supply		Occasional	Extreme	High	Intermediate	Low	
Date:	Thursday/Fri 25th/26th 201			ecosystem changed or made unviable	longtoterm environ impacts, hard to rectify	Env Effects <1Ha and <2yr, easily rectified	Env impact <0.1Ha & few weeks	"Minimal"		Unlikely	High	High	Intermediate	Low	
Location:	Arrow Energ Bne	y Offices,			I			1		Remote	High	Intermediate	Low	Negligible	
Facilitator:	J Doyle									Hypothetical	Intermediate	Low	Negligible	Negligible	
Management Process of AS	2885.1 to 2007, a When reviewing th	ordance with the Pipeline Safety s illustrated in the flowchart in is workshop record it should be			Pr-Procedural Ph-Physical Ritand R2 regular 5Ph + 2 Pr 11 and T2 regular 2Ph + 2 Pr	1				Frequency Once per year or more Several times in life of pil Possible, but probably not in life of this pil Not anticipated for this pil. Never occurred on similar pil	Frequent Occasional Unlikely Remote Hypothetical				
	Location Analysis		Threat Analysis		T1 and T2 require 2 Ph + 2 Pr Protection Analysis		Failure Analysis (refer Fracture Control Plan and Environmental & Other Plans		Risk As AS 4360 /	sessment 2885 App F		Risk Treatment	ALARP Analysis (if required)	Actions	
				Required		Failure of	Environmeniai & Other Plans					NEG: Review in Future LOW: Management Plan			
Point/Length Location (Approx. KP)	Location Class	Secondary Location Class (if applicable) Predominant Land Use and Other Features	Credible Threats	Measures for External Interference Threats	Selected Protection Measures	Protective Measures Possible?		Comments / Actions from Initial SMS	Severity	Frequency	Risk Ranking	INTER: Retoevaluate or ALARP analysis HIGH Retoevaluate ASAP EXTREME: Retoevaluate			
tion Specific Threats	R1	Grazing	Vehicle Loads	1Ph + 2 Pr	Depth of cover (Ph)	No	1						1		-
AB 0 to 478 (All) All laterals			Road maintenance activities i.e. excavations and grading Vehicle collision/Bogged vehicles (any vehicles)		Signage (Pr) Wall thickness (Ph) Arrow inspector on site during activities (Pr) Third party liaison (Pr) Dial before you dig (Pr)	Yes, for major rework									
			Erosion at track edges			No									
Future Road crossings	R1		Vehicle Loads	1Ph + 2 Pr	Depth of cover (Ph)	No									_
AB 0 to 478 (All) All laterals			Road construction activities i.e. excavations and		Signage (Pr) Wall thickness (Ph)	Yes, for major									
			grading		Arrow inspector on site during activities (Pr) Third party liaison (Pr)	rework									
			Vehicle collision (any vehicles)		Dial before you dig (Pr)	No									
			Bogged vehicles (any vehicles)			No									
			Erosion at track edges			No									
Typical Road Crossing AB 0 to 478 (All)	R1		Vehicle Loads	1Ph + 2 Pr	Depth of cover (Ph) Signage (Pr)	No									
All laterals			Road maintenance activities i.e. excavations and grading		Wall thickness (Ph) Arrow inspector on site during activities (Pr) Third party liaison (Pr)	No									
			Vehicle collision (any vehicles)		Dial before you dig (Pr)	No									
			Bogged vehicles (any vehicles)			No									
			Erosion at track edges			No									
			Road realignment			Yes									
			Installation of large traffic signs/guard rails/light			Yes									
			posts												
Typical Highway Crossing AB 95, 404.9, 416.4	R1		Vehicle Loads		Depth of cover (Ph) Signage (Pr)	No]
			Road maintenance activities i.e. excavations and grading		Wall thickness (Ph) Arrow inspector on site during activities (Pr)	No									
			Vehicle collision (any vehicles)		Third party liaison (Pr) Dial before you dig (Pr)	Yes, due to size									
						and weight of vehicles									
			Bogged vehicles (any vehicles)			No									
			Erosion at track edges			No									
			Road realignment			Yes									
			Installation of large traffic signs/guard rails/light			Yes									
			posts												
Typical watercourse major crossings i.e. rivers	R1		Flotation		Depth of cover (Ph) Heavy wall (Ph)	No									
AB 0 to 478 (All) All laterals			Vessel (small)/anchor/tree impact		CWC (Ph)	ТВА									
			Large objects during flood impacting the pipeline			Yes, large objects and in combination									
						with erosion of cover									
			Erosion of cover			Yes									
Typical watercourse minor crossings i.e. creeks, drains,	R1		Flotation		Depth of cover (Ph)	No									
1.4.5			Erosion of cover			Yes									
streams AB 0 to 478 (All)															
AB 0 to 478 (All) All laterals			Large objects during flood impacting the pipeline			Yes, large objects and in combination									

1

	Typical Rail Crossing AB 90, 92.3, 101, 393, 416.5, 427.6, 471 EL 47	R1			Train Loads Train derailment to impact on pipeline		Wall thickness (Ph) Depth of cover (Ph) Signage (Pr) Arrow inspector on site during activities (Pr) Third party liaison (Pr)	No Yes				
					Rail maintenance activities i.e. sleeper replacement, track relays		Dial before you dig (Pr) Correct pipeline earthing design (Ph)	No				
					Induced voltage from train line			No				
	Powerline crossings AB 70.1, 76.9, 77.9, 81 to 85.6, 253.5, 303.8, 354.6, 462.9 to 464 EL 13, 47.7, 47.8 to 48.5	R1		Power Lines In Proximity	Fault to earth to electrocution		Lateral separation (Ph) Operation safety procedures i.e. earth mats (Pr)	No	Check radius of effect of earth faults to does it affect the pipeline.			
	EL 13, 47.7, 47.0 10 40.3				Fault to earth to coating damage		Signage (Pr) Arrow inspector on site during activities (Pr) Third party liaison (Pr)	Yes				
					Power pole installation		Dial before you dig (Pr) Accurate positioning of pipeline (Pr)	Yes				
	Typical buried gas pipeline crossing	R1		Other Pipeline in Vicinity	Pipeline maintenance activities i.e. excavation		Depth of cover / separation / concrete slabs (Ph)	Yes				
	AB 0 to 478				Vehicle loads during maintenance activities		Signage (Pr) Marker Tape (Pr)	Yes				
					Installation of other pipelines		Arrow inspector on site during activities (Pr) Third party liaison (Pr)	Yes				
					Catastrophic failure of third party pipeline due to CP conflict		Dial before you dig (Pr) Accurate positioning of pipeline (Pr)	Yes				
					Catastrophic failure of third party pipeline due to any cause			Yes				
	Typical buried water/slurry pipeline crossing	R1		Other Pipeline in Vicinity	Pipeline maintenance activities i.e. excavation		Depth of cover / separation / concrete slabs (Ph)	Yes				
	AB 11.8 EL 46.9			vionity.	Vehicle loads during maintenance activities		Signage (Pr) Marker Tape (Pr)	Yes				
					Water leak causing loss of cover		Arrow inspector on site during activities (Pr) Third party liaison (Pr)	Yes				
							Dial before you dig (Pr) Accurate positioning of pipeline (Pr)					
1.11	Typical above ground water/slurry pipeline crossing	R1		Other Pipeline in Vicinity	Vehicle loads during maintenance activities		Signage (Pr) Marker Tape (Pr)	Yes				
	AB 387.2				Water leak causing some loss of cover			Yes				
	CSG infrastructure Arrow: wells, flow lines, dam construction	R1		Petroleum Lease	Wells (assumed Arrow wells): Drilling		Signage (Pr) Arrow inspector on site during activities (Pr)	Yes				
	AB 81.8, 89 EL 30.2 DL 2.2, 6				Vehicle loads/bogging		Accurate positioning of pipeline (Pr) Patrols (Pr)	Yes				
					Flow lines (assumed Arrow flow lines) Trenching			Yes				
					Vehicle loads			Yes				
					Dam (assumed Arrow Dam) Bulk excavation/scrapers/dozers			Yes				
					Vehicle loads			Yes				
1.13	CSG infrastructure third party: wells, flow lines, dam construction	R1		Petroleum Lease	Wells (third party) Drilling		Signage (Pr) Arrow inspector on site during activities (Pr)	Yes				
	AB 81.8, 89 EL 30.2				Vehicle loads/bogging		Accurate positioning of pipeline (Pr) Patrols (Pr)	Yes				
1	DL 2.2, 6				Flow lines (third party)							
					Trenching Vehicle loads			Yes				
					Dam (third party)			163				
					Bulk excavation/scrapers/dozers			Yes				
1 14	Active mine (coal)	R1	Heavy Industrial	Mining Lease	Vehicle loads Possible open cut mining to physical impact of		Liaison between proponent companies and	Yes				
	AB 74 to 77	N1	(not high consequence (no	Nining Lease	pipeline		exclusion of mining around pipeline prevents work within the pipeline easement (Pr)	110				
	EL 3 to 6 SL 3.1 to 6.7		coal stock piles and mine does not		Possible underground mining to subsidence		Assumed that pipeline is not designed for any	Yes				
	DL 7.3 to 14.1		directly lay over pipeline))		Vibrations from blasting		subsidence initially and capacity for subsidence ends up being calculated later	Yes	Look for overlaps between underground mining and large water course crossings			
									of pipelines.			
					Mine trucks traversing pipeline			No				
1.15	Adjacent active mine (salt) AB 433 to 435	R1	Heavy Industrial (not high	Mining Lease	Tracked vehicles adjacent to the pipeline or access track construction		Signage (Pr) Marker Tape (Pr) Botole (Pr)	Yes				
			consequence)				Patrols (Pr) Community liaison (Pr) Liaison between proponent companies and					
							exclusion of mining around pipeline prevents work within the pipeline easement (Pr)					
	010	-	016	In ducts' 1								
1.16	CIC SGIC at AB 418 to 469.5 GSDA at AB 469.5 to 478	R2	CIC	Industrial								
	Marlborough Nickel Corridor AB 329 to 407.9					TBA			Check declared CIC projects with interests.			
	Turinel anallat			Others D'				No				
	Typical parallel gas pipeline AB 265 to 349 (AGL), AB 329.2 to 407.5 (Gladstone	R1		Other Pipeline in Vicinity	Pipeline maintenance activities i.e. excavation		Arrow inspector on site during activities (Pr) Depth of cover / Concrete slabs (Ph) Signage (Pr)	No				
	Nickel Project p/l), AB 408.7 to 411.1 (Gladstone to				Vehicle loads during maintenance activities Catastrophic failure of third party pipeline due to		Marker Tape (Pr) Separation approx. 30m (Ph)	No				
	rocky p/l (AGL Jemena to tbc))				any cause		Depth of cover / separation / concrete slabs (Ph)					
							Third party liaison (Pr) Dial before you dig (Pr) Accurate positioning of pipeline (Pr)					
4.00	Tunical parallal water size "	54		Othor Dia - I'	Vohiala landa durininter			Vac	Make ourse the former in an affinite of			
1.18	Typical parallel water pipeline AB 90 to 93	R1		Other Pipeline in Vicinity	Vehicle loads during maintenance activities		Signage (Pr) Marker Tape (Pr) Separation (Ph)	Yes	Make sure the fence is specified in the licence agreement.			
					Water leak causing loss of cover		Proposed light duty fence between water and gas pipelines during construction (Pr)	Yes				
							Third party liaison (Pr) Dial before you dig (Pr) Accurate positioning of pipeline (Pr)					
			1	1			, source possioning or pipeline (PT)					I

<u> </u>

1.19 Parallel powerlines	R1		Power Lines In	Induced voltages from nearby power transmission	Correct earthing design (Ph)	No					
AB 81 to 85.6, 462.9 to 464	Ki		Proximity	lines	Lateral separation (Ph)	140					
EL 47.8 to 48.5				Fault to earth to electrocution	Operation safety procedures i.e. earth mats (Pr)	No					
				Fault to earth to coating damage	Signage (Pr) Arrow inspector on site during activities (Pr)	Yes					
					Third party liaison (Pr)						
				Power pole installation	Dial before you dig (Pr) Accurate positioning of pipeline (Pr)	Yes					
20 Future and existing substations	R1	Industrial	Industrial	Blasting	Heavy wall (Ph)	Yes					+
AB 103, AB 405				Bulk earth works	Depth of cover (Ph) Signage (Pr)	Yes					
					Patrols (Pr) Marker tape (Pr)						
				Outlying earthing stakes	Third party liaison (Pr)	Yes					
				Induced currents	Arrow inspector during site work (Pr) Dial before you dig (Pr)	No					
				Fault to earth to electrocution	CP/earthing design (Ph)	No					
					Accurate positioning of pipeline (Pr) Careful earthing design in the vicinity of the	No					
				Fault to earth to coating damage	substation (Ph)	INO					
1.21 Proposed mining camp	R1	Sensitive	Mining Lease	No identified threat to the pipeline	Heavy wall (Ph)	N/A					+
AB 101 to 102			Ŭ		Depth of cover (Ph) Signage (Pr)						
					Patrols (Pr)						
					Marker tape (Pr) Third party liaison (Pr)						
					Arrow inspector during site work (Pr)						
					Dial before you dig (Pr) Accurate positioning of pipeline (Pr)						
.22 Cleared areas to purpose unknown	R1		Grazing	Blade ploughing	Depth of cover 1200 mm (Ph)	No		Review previous study by GHD on		 	_
AB 0 to 478 km (all)					Signage (Pr)			depth of blade ploughing to see whether			
EL 37 onwards				Vehicle loads	Patrols (Pr) Third party liaison (Pr)	Yes		1200 mm is enough.			
				Rippers	Arrow inspector during site work (Pr) Dial before you dig (Pr)	No					
					Accurate positioning of pipeline (Pr)						
1.23 Possible cultivation	R1	1	Cropping	Blade ploughing	Depth of cover 1200 mm (TBC) (Ph)	No		Determine the depth of tillage.			
AB 159 onwards, 172 to 174, 211 - onwards					Signage (Pr) Patrols (Pr)						
DL 0 onwards					Third party liaison (Pr) Arrow inspector during site work (Pr)						
				Vehicle loads	Dial before you dig (Pr)	Yes					
				Rippers	Accurate positioning of pipeline (Pr)	No					
1.24 Centre pivot irrigation to grow	R1			TBC	Depth of cover 1200 mm (TBC) (Ph)	No		Determine method of tillage for centre		 	+
vegetation	KI.			180	Signage (Pr)	140		pivot irrigation.			
AB 244 to 245				Underground water pipe installation	Patrols (Pr) Third party liaison (Pr)	Yes					
					Arrow inspector during site work (Pr)						
					Dial before you dig (Pr) Accurate positioning of pipeline (Pr)						
1.25 Contour banking (may be	R1		Cropping	TBC	Increase depth of cover (TBC)	No		Determine the height, and therefore			
extended) AB 311, 318 to 319, 343 to 344,					Signage (Pr) Patrols (Pr)			depth of cover, required for contour banking.			
358 to 359, 372 to 373					Third party liaison (Pr)			bankiig.			
					Arrow inspector during site work (Pr) Dial before you dig (Pr)						
					Accurate positioning of pipeline (Pr)						
1.26 Possible flood plains	R1		None	Inundation with simultaneous liquefaction	Geotech study to define tenancy of flotation,	No		Carry out appropriate geotech study.			+-
AB 320 onwards AB 428 onwards					with buoyancy control						
EL 29											
1.27 PASS (potential acid sulphates	R1		None	Loss of FJC and corrosion to the pipeline	Study to confirm that PASS actually is ASS an	d No					-
soil) AB 428 onwards					then study to confirm that FJC will resist the acid						
	D4		Creation	lastellation of anomal former and		No					—
1.28 Grazing AB 0 to 478	R1		Grazing	Installation of normal fence posts	Signage (Pr) Patrols (Pr)	No					
All Laterals				Installation of corner and strainer posts	Third party liaison (Pr)	Yes					
				Stock damaging signs		Yes					
				Dam construction		Yes					
1.29 Third party seismic surveys	R1		Grazing	Vibration from Seismic Surveys	Signage (Pr)	Yes					
	R.I		Cracitly	Contraction room detailite durveys	Patrols (Pr)	163					
					Third party liaison (Pr) Arrow inspector (Pr)						
1.30 Rural residential/possible industrial	R2	Industrial	Residential/Small	Swimming pools and dam construction	Signage (Pr)	No				 	
AB 391 onwards	n2	nuustiai	Industry	community pools and dam construction	Patrols (Pr)						
					Third party liaison (Pr) Arrow inspector (Pr)						
1.30 Residential	T1		Residential	Swimming pools and dam construction	Signage (Pr)	No				 	—
Yarwun					Patrols (Pr)	-					
AB 446 to 469					Third party liaison (Pr) Arrow inspector (Pr)						
1.91 Papaitiva ()	74	Sensitive	Residential	No identified threat		N/A					
1.31 Sensitive (school) AB 465	T1	Sensitive	Residential	No identified threat	Heavy wall (Ph) Depth of cover (Ph)	N/A					
					Signage (Pr)						
					Patrols (Pr) Marker tape (Pr)						
					Third party liaison (Pr) Dial before you dig (Pr)						
					Accurate positioning of pipeline (Pr)						
Design and Materials		1	1		<u> </u>	1	1			 	
2.1 Entire Length				Design Errors	Design has been to approved standards and	No					T
					has been checked. Approvals matrix to AS 2885						
					Hydrotesting (partial measure)						
					Experienced personnel (RPEQ)						
					Second and third party verification of design.						
			1			1					
					CNPC and Shell will also overview and audit						- I
					CNPC and Shell will also overview and audit design						

2.2 Entire Length	Material Defects	Materials have been selected to comply with design standards. Acceptance and implementation of	Require contractor to demonstrate minimised and careful handling of coated pipe.	
		NDT, ITPs, material certificates and hydrotests recommendations/a minimise the possibility of defects existing in the clons pipeline and facilities.		
		Owners team QA inspections at start of steel making process and throughout the whole		
		coating/delivery supply chain Retain expert advisers		
		Real special precautions around handling of		
2.3 Entire Length	Hydrotesting issues and 0.8 design factor issues	FBE (handling specification) The effect of coating process on the pipe No, subject to	Melo suo sino anno creturo coort	
	riyulutesting issues and 0.6 design ractor issues	acceptance and Receiving metallurgical advice (as a result of implementation of	Make sure pipe spec captures recent industry lessons learnt on items such as stresstostrain curves, coating process,	
		the effect of FBE coating on the pipe) recommendations/a ctions	strain aging, yield ratio, field weldability (all tests done on coated pipe).	
			Consider the initial additional impact of spiral welded pipe.	
3. Latent Construction Defects				
3.1 Entire Length	Coating damage in general	Appropriate specification No Enforcement of specification on site and	Ensure spec prescribes the use of brush type jeeper.	
	Coating damage after pipe lowering due to backfill	dedicated backfill inspector DCVG survey post burial and monitoring of the		
		CP performance		
		Proposing a DCVG regime (operations process)		
3.2 Entire Length	Undiagnosed welding defects due to poor NDT	Appropriate spec No Enforcement of spec	Baseline calibration of AUT.	
		Hydrotesting		
3.3 Entire Length	Cyclic fatigue of pipeline due to operation of upstream gathering and downstream LNG plant	Liaison with upstream and downstream at the No design basis stage	Confirm that cyclic operation does not give rise to fatigue design on the	
		Recording of number of pressure cycles (SCADA)	pipeline.	
		Intelligent pigging		
4. Operation and Maintenance				
4.1 Entire Length	Pipeline Internal Corrosion	Non corrosive and dry gas No Water sampling Regular pigging		
		Occasional intelligent pigging Moisture analyser		
4.2 Entire Length	Pipeline External Corrosion	Cathodic protection No DCVG surveys		
		Protective coating Intelligent pigging Backfill specification and enforcement		
		External coating spec and enforcement Proper discovery of ASS Field joint coating specs and enforcement		
4.3 Entire Length	Stress Corrosion Cracking / Environmental corrosion cracking	Assessed cyclic stresses No High quality coating		
4.4 Entire Length	Fatigue Cracking	Intelligent pigging Assessed cyclic stresses No		
4.5 Entire Length	Bacterial Corrosion	Intelligent pigging Control of gas quality No		
4.7 Entire Length	Cathodic Protection Shielding			
4.8 Entire Length	Overpressure Control System Failure	Quality coating No Multi redundant pressure control system as per No		
4.9 Entire Length	Inadequate servicing of valves	AS 2885 Regular inspections to maintenance schedule No		
	incluque ou nong a rarco	Experienced personnel High quality valves		
4.10 Entire Length	Inadequate servicing or obscuring of signage.	Patrols. No		
4.11 Entire Length	Inadequate servicing of CPUs.	Potential surveys No CPU readings		
5. Operating Errors		Maintenance schedule		
5.1 Entire Length	Lapsed or incorrect CP testing	Competent operators No Available training		
		Operating procedures Licensed operator Fail safe design		
5.2 Entire Length	Overheating of coating system	Spot dig ups on unpigged lines Yes Routine audits of operating practices and		
		SCADA history Competent operators Available training		
		Operating procedures Licensed operator		
5.3 Entire Length	Incorrect as builts	Fail safe design QA procedures No		
		Audits Competent operators Available training		
		Operating procedures Licensed operator		
5.4 Entire Length	Failure of third party liaison	Fail safe design QA procedures No		
		Audits Competent operators Available training		
		Operating procedures Licensed operator		
5.5 Entire Length	Procedures which place too much onus operators having very high and very broad skill levels	Clear and unambiguous procedures and No enforcement Review of operating procedures regularly		

1	

	tural Events								
6.1	Entire Length	Bushfire	Depth of cover No ROW patrols Appropriate facility design						
6.2	Entire Length	Lightning	Appropriate surge diversion Yes Appropriate earthing	15					
6.3	Entire Length	Flooding	Refer to location specific N/A	A					
6.4	Entire Length	Earthquake	Seismic study to determine active fault lines in Yes the areas Special design at these locations	15					
6.5	Entire Length	Tsunami to refer to location specific	Depth of cover No						
6.6	Entire Length	Soil to expansion/contraction	Highly adhesive factory and FJC No						
6.7	Entire Length	Telluric effects	CP potential reads No Appropriate CP design						
7. Se	curity				• •	+		ł	
7.1	Entire Length	Incident due to sabotage, threat of sabotage or unauthorised operation.	ROW Patrols Yes Fenced Facilities Buried	s					
	Entire Length	Terrorism/Vandalism	ROW Patrols Yes Fenced Facilities Buried	8					
8. En	vironment								
8.1	Entire Length	Ground water and soit contamination from fuel and other chemicals used on site e.g. lubricants	Low point drains is (controls quantity) Regular cleaning pigs (controls quantity) Spill response procedures Cleaning pig procedures Small quantities of contaminants used						

ALL CONTROLS FAILED AS PER SECTION 2.3.6 to defer to detailed SMS

Appendix E Wall Thickness Calculation Report

CALCULATION

ABP

Calculation for Wall Thickness Requirement for Internal Pressure 41-24306

Revision

Rev					
No.	Calculation By:	Checked By:	Approved By:	Description:	Date:
A	E Bart	T Mills	T Mills	Issued for Use For Preliminary SMS	22-Aug-11
в	R Turna	P Nasehmanesh	P Nasehmanesh	Issued for Use For Preliminary SMS	29-Sep-11
	t.	R	pr-		

Calculation Summary

This calculation determines the pipeline wall thickness for the ABP, taking into consideration internal pressure only.

Client: Project: Calculation Title: Arrow Energy ABP Wall Thickness Requirement

Job No: 41-24306

1. Introduction

Arrow Energy (the Principal), is proposing to develop a pipeline network in central eastern Queensland that will deliver coal seam gas from its gas fields in the Bowen and Surat Basins to a proposed LNG facility to be located on Curtis Island near Gladstone. The proposed network will be approximately 1,200km long and will incorporate scraper stations and intermediate mainline valves.

A pipeline licence has been granted for the major part of the proposed pipeline from the Surat Basin, however an environment impact assessment of the initial 100km at the start of this pipeline, to the Kogan North Central Gas Processing Facility near Dalby in south-eastern Queensland, is required.

No part of the proposed pipeline from the Bowen Basin has yet been assessed and this preliminary engineering is associated with the full extent of approx. 610km of pipeline length, the subject of a separate report.

The ABP system will consist of a DN800 (32"), Class 600 buried steel pipeline. This calculation also reflects a possible future upgrade of the ABP system to a DN1050 (42") pipe diameter.

This calculation only considers the internal pressure containment requirements. It is for preliminary design purposes only.

The design parameters are:

- DN800
- DN1050 (possible upgrade)
- API 5L X70
- MAOP/Design Pressure 10.2 MPa(g)
- Design Temperature: -10 to 60°C (assumed)

2. Design Basis and Scope

The basis for performing this calculation is in accordance with AS 2885.1-2007 Section 5.4.2, which requires numerous design, operation and constructability issues to investigated and (where applicable) wall thickness values to be calculated. The wall thickness shall be the greatest of the values calculated.

This calculation determines the pipeline wall thickness for the above mentioned project, taking into consideration internal pressure only.

The further requirements of AS2885.1 are covered in separate calculations.

3. Assumptions

3.1 Code Related Inputs

3.1.1 Specified Minimum Yield Strength

API Grade	SMYS (MPa)	UTS (MPa)
X 70	485	565(minimum)

Job No: 41-24306

3.1.2 Design Factor

The maximum allowable design factors are:

0.80 - general

Þ

0.67 - for pipeline assemblies and facilities

3.1.3 Gas Temperature

Where the pipeline design temperature is above 65°C the yield stress of the pipe steel shall be de-rated in line with AS2885.1 3.4.3 – Strength De-rating. The reduction in yield strength shall be 0.07%/°C by which the design temperature exceeds 23°C.

It is assumed that the maximum pipeline temperature is 60°C. Therefore strength de-rating is not required as per AS2885.1.

3.2 Design Basis Inputs

3.2.1 Additional Allowances

The gas flowing through the pipeline is assumed to be 'Sales Gas' quality. Consequently the gas is deemed to be 'Non-Corrosive'. Therefore, the pipeline will have a corrosion allowance of 0 mm.

3.2.2 Pressure Class & Pressure

The pipeline has a Design Pressure of 10.2 MPa.

4. Calculation Procedure

4.1 Internal Pressure

The pipeline wall thickness is calculated using the Barlow formula for internal pressure, using Equation 5.4.3 from AS 2885.1.

$$t_p = \frac{p_d \times D}{\mathbf{2 \times} F_d \times \sigma_y}$$

P_d = Pressure	e (MAOP)
------------------	----------

- F_d = Design Factor
- σ_y = Yield Strength
- \vec{D} = Outside Diameter
- t_p = Wall Thickness

5. Calculation Results

5.1 Internal Pressure

The minimum wall thickness for internal pressure is tabled below both pipe diameters with the associated design factors.

	DN	DN (in)	OD (mm)	MAOP (MPa)	Grade	Design Factor	Minimum Wall Thickness (mm)
General	800	32	813	10.2	X 70	0.80	10.69
Pipeline Assemblies	800	32	813	10.2	X 70	0.67	12.76

FORMANCE	Calculation	Client: Project: on Title:	Arrow Energy ABP Wall Thicknes	s Requirement	Job No:	<u>41-24306</u>
 DN upgrade	DN (in)	OD (mm)	MAOP (MPa)	Grade	Design Factor	Minimum Wall Thickness (mm)

General	1050	42	1067	10.2	X 70	0.80	14.03
Pipeline Assemblies	1050	42	1067	10.2	X 70	0.67	16.75

6. Conclusion

Each location class requires the following minimum wall thickness to meet only the internal pressure design requirement. Results are rounded up to the nearest 0.1 mm.

All locations require a minimum wall thickness of 10.7 mm for DN800 or 14.1 mm for DN1050.

Pipeline Assemblies and facilities require a minimum wall thickness of 12.8 mm for DN800 or 16.8 mm for DN1050.

ARROW ENERGY

Rail Crossing Calculation for ABP 41-24306

Revision

Rev No.	Calculation By:	Checked By:	Approved By:	Description:	Date:
Α	E Bart	T Mills	T Mills	Issued for Use for Preliminary SMS	22-Aug-11
в	R Turna	P Nasehmanesh	P Nasehmanesh	Issued for Use for Preliminary SMS	29-Sep-11
		pl	pr		

Calculation Summary

This calculation determines the resistance to external loads for railway crossings along the proposed ABP pipeline route, in accordance with AS 2885.1 and API RP1102.

Client: Project: Calculation Title: ARROW ENERGY ABP Rail Crossing Calculation for a CALCULATION

Job No:

41-24306

1. Introduction

Arrow Energy (the Principal), is proposing to develop a pipeline network in central eastern Queensland that will deliver coal seam gas from its gas fields in the Bowen and Surat Basins to a proposed LNG facility to be located on Curtis Island near Gladstone. The proposed network will be approximately 1,200km long and will incorporate scraper stations and intermediate mainline valves.

A pipeline licence has been granted for the major part of the proposed pipeline from the Surat Basin, however an environment impact assessment of the initial 100km at the start of this pipeline, to the Kogan North Central Gas Processing Facility near Dalby in south-eastern Queensland, is required. No part of the proposed pipeline from the Bowen Basin has yet been assessed and this preliminary engineering is associated with the full extent of approx. 610km of pipeline length, the subject of a separate report.

The ABP system will consist of a DN800 (32"), Class 600 buried steel pipeline. This calculation also reflects a possible future upgrade of the ABP system to a DN1050 (42") pipe diameter.

This calculation checks the resistance to external loads of DN800 pipe, at railway crossings on the ABP Pipeline route, in accordance with AS 2885.1 and API RP1102.

2. Input Data / Assumptions

2.1 Pipeline Parameters

Installed Temperature (Assumed)	21°C		
Design Pressure	10.2 MPa		
Max Operating Temperature	60°C		
Min Operating Temperature	-10°C		
Type / OD	813 mm		
Type / OD (possible upgrade)	1067 mm		
Pipe Grade / SMYS (MPa)	X70 / 485 MPa		
Pipe Type (Seamless / ERW / SAW)	ERW		
Design Factor	0.72		

Client: Project: Calculation Title: ARROW ENERGY ABP

Rail Crossing Calculation for

41-24306

Job No:

Steel Properties	
Young's Modulus (Es)	205,000,000 kPa
Coefficient of Thermal Exp. (α)	1.17E-05
Poisson's Ratio	0.30

2.2 Input Parameters

The soil type selected for the calculation was: Soft to medium clays and silts with low to medium plasticities; (loose sands and gravels). A soil density of 18.9 kN/m3 was chosen based on RP1102 recommendations. Refer to assumptions below.

Soil Type:	Soft to Medium clays and silts with low to Medium plasticities
Soil Density	18.9 kN/m³
Buried Depth to Top of Pipe	2000 mm
External Load - Pressure	96 kPa

The external load used for this calculation has been recommended by AS 2885, in the form of 356 kN or approximately 36 tonne per axle and a 20ft x 8 ft, 4 axle, wagon. 96 kPa = (4 * 356 kN / 20ft * 8 ft)

2.3 Assumptions

- 1 The 'Soft to medium clays and silts with low to medium plasticities; loose sands and gravels' soil type was assumed as recommended in Section 4.7.2.1 of RP1102. These parameters are generally conservative. Note that geotechnical data isn't available for the actual sites.
- 2 The pipe minimum and maximum operating temperatures as well as the installation temperature are assumed to be equivalent to the minimum and maximum gas temperatures as referenced in the SGP Basis of Design (08-GHD-3-02-0045). The calculations are very sensitive to temperature.

Project: Calculation Title:

Client:

Job No:

41-24306

3. Calculation Results

The results are summarised below and detailed within Appendix A.

DN 800

ľ	Min. Wall	Cyclic	Cyclic	Circumferential	Effective Stress	Allowable Stress
l	Thickness	Circumferential	Longitudinal	Stress (kPa)	(kPa)	(kPa)
	(mm)	Stress (kPa)	Stress (kPa)			
	14.90	57,473	48,002	273,175	348,921	349,200

DN 1050 (possible upgrade)

Min. Wall	Cyclic	Cyclic	Circumferential	Effective Stress	Allowable Stress
Thickness	Circumferential	Longitudinal	Stress (kPa)	(kPa)	(kPa)
(mm)	Stress (kPa)	Stress (kPa)			
19.60	52,419	38,097	272,538	347,631	349,200

Effective stresses are within allowable limits Girth weld stresses are within fatigue allowable limits Longitudinal stresses are within fatigue allowable limits

4. Conclusion

The wall thickness at Railway crossings shall be a minimum of 14.9 mm for DN800 and 19.6 mm for DN1050.

The pipeline at the rail crossing is adequately designed to resist external loading as per API RP1102. Note that the API RP1102 calculation does not take any credit for added strength due to casings. This is because the space between the casing and pipeline is generally filled with a grout / cement, which can transmit loads from the casing to the pipeline. That is, API RP1102 requires that the pipeline on its own (without casing) be designed to withstand the loads experienced at a rail crossing.

Best practice installation techniques, in accordance with API RP1102, are recommended. API RP1102, Section 4.9 recommends the location of longitudinal welds at the 45, 135, 225 or 315 degree position with the crown at the zero position. Section 4.10 recommends locating girth welds at the crossing at a distance of at least 3m from the centreline of the tracks.

This calulation should be reviewed once the actual requirements of the rail authority are known.

5. References

API RP1102 - Steel Pipelines Crossing Railroads and Highways AS 2885.1 - Pipelines - Gas and Liquid Petroleum Part 1: Design and Construction, Appendix V

	_	-	
6	A	1	
			2

ARROW ENERGY ABP Rail Crossing Calculation for

Client:

Project:

Job No: 41-24306

Appendix 1 -Railway Crossing Calculation DN800

APPENDIX 1

CLIENTS PEOPLE PERFORMANCE

Client: ARROW ENERGY Project: ARROW ENERGY ABP PIPELINE Calculation Title: Rail Crossing

Job No: 41-24306

Pipeline Conditions							
Type / OD (mm)	DN800	813.0					
Pipe Grade / SMYS (MPa)	X70	485					
Wall Thickness (tw)	14.9	mm					
Weld Type	Seamle	ess and ERW					
Design Pressure (MAOP)	10.20	MPa					
Buried Height	2000	mm					
Design Factor		0.72					
Installation Temperature	21	°C					
Max Operating Temperature	60	°C					
Min Operating Temperature	-10	°C					

Steel Properties									
Young's Modulus (E _s)	2.1E+08	kPa							
Coefficient of Thermal Exp. (a)	1.17E-05	per °C							
Poisson's Ratio (v _s)	0.30								

Enter value between 1800 and 4300. If pipe depth > 4300, enter 4300 (conservative)

0.72 is used for crossing calc as per AS2885.1-2007 Section 5.7.3 c) (i)

Pipeline Options			
Trenched Construction?	Other		
		· · · · · · · · · · · · · · · · · · ·	and silts with low to medium plasticities; loose
Soil Type / Description	sands an	d gravels	
Soil Unit Weight	18.9	kN/m ³	Recommended value from RP1102: 18.9
Single or Double Track Crossing?	Double		

	Pipeline Results						
Cyclic Circumferential							
stress	S-Hr	57473	kPa				
Cylic Long stress	S-Lr	48002	kPa				
Circumferential stress	S-Hi	273175	kPa				
Effective Stress	Seff (T2Min)	348921	kPa				
	Seff (T2Max)	325811	kPa				
				% of Allowable / Limit			
Effectiv	ve stresses are v	within allo	wable limits.	99.9			
Girth v	weld stresses are	e within fa	atigue limits.	89			
Longitudi	nal weld stresse	s are with	in fatigue limits.	37.89			

					APPENDIX
CLIENTS PEOPLE PERFORM	ANCE			t: ARROW ENERGY ABP	
			Calculation Title	Rail Crossing	Job No: <u>41-24306</u>
02 Rail Crossing Calculation					Input Data
Input Data				BB1102 Calculated/	Input obtained from 1102 Figures/graphs
Input Data Design Pressure	MAOP	10.20	MPa	RP1102 Calculated/I Other	Trenched Construction/Other ?
Pipe Material	MAOI	X70		H/Bd	2.31
Yield Strength	SMYS	485	MPa	tw/D	0.018
Outside Diameter	D	813	mm	Bd	864 D + 51mm if unknown, if trenched Bd = D
Wall thickness					1.06
	tw	14.9	mm	Bd/D	1.00
Buried Height DF - for allowable stress	H DF	2000 0.72	mm		
DI - IOI allowable stress	ы	0.72			
RP 1102 Soil Data					
Soil Reaction Mod	Ε'	3.4	MPa	2	
Soil Unit weight	_ y	18.9	kN/m3	- Recommended value from	RP1102
Soil Resilient Mod	Er	34	MPa		
Earth Load					$\mathbf{K} = \mathbf{f} \begin{bmatrix} \mathbf{t}_{w} & \mathbf{F} \end{bmatrix}$
Circ stiffness factor	K-he	3358		Obtained from figure 3	$\mathbf{K}_{He} = J \overline{D}, E \mathbf{j}$
Earth Burial factor	Be	0.69	Soil A	Obtained from figure 4	
Earth Excavation factor	Ee	0.928		Obtained from figure 5	$K_{He} = f\left\{\frac{t_{w}}{D}, E'\right\}$ $B_{e} = f\left\{\frac{H}{B_{d}}\right\}$ T Mills
D	Be	32864.7	' kPa	0	$\begin{bmatrix} \mathbf{D}_d \\ \mathbf{B}_d \end{bmatrix}$ T Mills
Earth Excavation factor	Ee				$E_{e} = f\left\{\frac{B_{d}}{D}\right\}$ T Mills
Live Load	w	96.0	kPa	96KPa as per Section 4.7.	2.2.1 1.4
Impact Factor	Fi	1.711156667			ault calculated based on Figure 7 for railways, else use DLA (refer App W
					DR04561)
Railroad Cyclic Stresses					(t)
Stiffness factor	K-Hr	452.78	3	Obtained from figure 8	$K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$
Geometry factor	G-Hr	0.632243047		Obtained from figure 9	
Circ Double Track factor	N-Hr	1.222158874	L .	Obtained from figure 10	
Cyclic Circ stress	S-Hr	57472.7	' kPa		
Long stiff factor	K-Lr	472.58829)	Obtained from figure 11	
Long Geo factor	G-Lr	0.550119738	5	Obtained from figure 12	
Long Double Track factor	N-Lr	1.1239772	2	Obtained from figure 13	
Cylic Long stress	S-Lr	48001.9	kPa		\mathbf{D} (\mathbf{D} 4)
Internal Pressure Stress					$S = \frac{P(D - tW)}{P(D - tW)}$
Circ stress	S-Hi	273175.1678	kPa		$S_{Hi} = \frac{P(D - tw)}{2t_w}$
					n
Check for Allowable Stresses					
Coeff thermal expansion	alaha	1.2E-05	nor 90		
Young's Modulus Steel	alpha Es	2.1E+08		Obtained from Table A1 Obtained from Table A1	
Installation Temperature	T1	2.12+00		Obtained from Table A1	
Max Operating Temperature	T2-max	60.0		39.0	
Min Operating Temperature	T2-min	-10.0		-31.0	
Min Operating Temperature	12-11111	-10.0		-51.0	
ΔT component at max T2		93,541.5	kPa	E*alpha*∆T	
ΔT component at min T2		-74,353.5		E*alpha*∆T	
		14,000.0	, Ki u		
Poisson's ratio of steel	VS	0.3	5		
Poisson's ratio of steel Possion's component	VS	0.3 91,812.0		v(S-he + S-hi)	
	VS			v(S-he + S-hi)	
	vs S1		kPa		$\overline{S_1 = S_{H_P} + \Delta S_{H_B} + S_{H_i}}$
		91,812.0	kPa		$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$
Possion's component		91,812.0	kPa kPa		$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$ $S_2 = \Delta S_L - E_s \alpha_t (T_2 - T_1) + V_s (S_{He} + S_{Hi})$
Possion's component Max Circumferential stress	S1	91,812.0 363,512.5	kPa ikPa ⊧kPa		$S_2 = \Delta S_L - E_s \alpha_t (T_2 - T_1) + v_s (S_{He} + S_{Hi})$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress	S1 S2 (T2max) S2 (T2min)	91,812.0 363,512.5 46,272.4 214,167.4) kPa i kPa ↓ kPa ↓ kPa		
Possion's component Max Circumferential stress High Temp Max Longitudinal stress	S1 S2 (T2max)	91,812.0 363,512.5 46,272.4) kPa i kPa ↓ kPa ↓ kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress	S1 S2 (T2max) S2 (T2min) S3	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0	i kPa i kPa ↓ kPa ↓ kPa ↓ kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max)	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1	0 kPa 6 kPa 9 kPa 9 kPa 0 kPa 8 kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress	S1 S2 (T2max) S2 (T2min) S3	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0	0 kPa 6 kPa 9 kPa 9 kPa 0 kPa 8 kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min)	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8	kPa kPa kPa kPa kPa kPa kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200) kPa 5 kPa 4 kPa 9 kPa 6 kPa 5 kPa 9 kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min)	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200) kPa 5 kPa 4 kPa 9 kPa 6 kPa 5 kPa 9 kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200) kPa 5 kPa 4 kPa 9 kPa 6 kPa 5 kPa 9 kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200) kPa 5 kPa 4 kPa 9 kPa 6 kPa 5 kPa 9 kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200) kPa 5 kPa 4 kPa 9 kPa 6 kPa 5 kPa 9 kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ $S_{3} = -P$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str Check for Fatigue	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa resses are with	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200) kPa i kPa kPa kPa kPa kPa kPa imits.		$\overline{S_{2} = \Delta S_{L} - E_{s} \alpha_{i} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})}$ $\overline{S_{3} = -P}$ $S_{eff} = \sqrt{\frac{1}{2} [(S_{1} - S_{2})^{2} + (S_{2} - S_{3})^{2} + (S_{3} - S_{1})^{2} + (S_{3} - S_{1})^$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200 in allowable I	 kPa 	SMYS x DF	$\overline{S_{2} = \Delta S_{L} - E_{s} \alpha_{i} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})}$ $\overline{S_{3} = -P}$ $S_{eff} = \sqrt{\frac{1}{2} [(S_{1} - S_{2})^{2} + (S_{2} - S_{3})^{2} + (S_{3} - S_{1})^{2} + (S_{3} - S_{1})^$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str Check for Fatigue Girth fatigue endurance limit	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa resses are with Sfg	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200 in allowable 1 485000	 kPa 	SMYS x DF	$\overline{S_{2} = \Delta S_{L} - E_{s} \alpha_{i} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})}$ $\overline{S_{3} = -P}$ $S_{eff} = \sqrt{\frac{1}{2} [(S_{1} - S_{2})^{2} + (S_{2} - S_{3})^{2} + (S_{3} - S_{1})^{2} + (S_{3} - S_{1})^$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str Check for Fatigue Girth fatigue endurance limit check for S-Lr < Sfg x DF	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa resses are with Sfg	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200 iin allowable 1 485000 48002) kPa 6 kPa 6 kPa 7 kPa 8 kPa 9 kPa 1 kPa 1 kPa 1 mits. 1 kPa 2 kPa	SMYS x DF	$\overline{S_{2} = \Delta S_{L} - E_{s} \alpha_{i} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})}$ $\overline{S_{3} = -P}$ $S_{eff} = \sqrt{\frac{1}{2} [(S_{1} - S_{2})^{2} + (S_{2} - S_{3})^{2} + (S_{3} - S_{1})^{2} + (S_{3} - S_{1})^$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str Check for Fatigue Girth fatigue endurance limit check for S-Lr < Sfg x DF	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa resses are with Sfg dSL	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200 iin allowable 1 485000 48002) kPa 6 kPa 6 kPa 7 kPa 8 kPa 9 kPa 1 kPa 1 kPa 1 mits. 1 kPa 2 kPa	SMYS x DF	$\overline{S_{2} = \Delta S_{L} - E_{s} \alpha_{i} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})}$ $\overline{S_{3} = -P}$ $S_{eff} = \sqrt{\frac{1}{2} [(S_{1} - S_{2})^{2} + (S_{2} - S_{3})^{2} + (S_{3} - S_{1})^{2} + (S_{3} - S_{1})^$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str Check for Fatigue Girth fatigue endurance limit check for S-Lr < Sfg x DF Girth weld stress	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa resses are with Sfg dSL stresses are w	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200 in allowable I 485000 48002 ithin fatigue Ii	 kPa 	SMYS x DF	$\overline{S_{2} = \Delta S_{L} - E_{s} \alpha_{i} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})}$ $\overline{S_{3} = -P}$ $S_{eff} = \sqrt{\frac{1}{2} [(S_{1} - S_{2})^{2} + (S_{2} - S_{3})^{2} + (S_{3} - S_{1})^{2} + (S_{3} - S_{1})^$
Possion's component Max Circumferential stress High Temp Max Longitudinal stress Low Temp Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Effective str Check for Fatigue Girth fatigue endurance limit check for S-Lr < Sfg x DF	S1 S2 (T2max) S2 (T2min) S3 Seff (T2Max) Seff (T2Min) Sa resses are with Sfg dSL	91,812.0 363,512.5 46,272.4 214,167.4 -10,200.0 325,811.1 348,920.8 349200 iin allowable 1 485000 48002	 kPa 	SMYS x DF	$\overline{S_{2} = \Delta S_{L} - E_{s} \alpha_{i} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})}$ $\overline{S_{3} = -P}$ $S_{eff} = \sqrt{\frac{1}{2} [(S_{1} - S_{2})^{2} + (S_{2} - S_{3})^{2} + (S_{3} - S_{1})^{2} + (S_{3} - S_{1})^$

 check for S-Hr < Sfl x DF</td>
 124106 kPa
 Sfl x DF

 Longitudinal Wel Stresses
 47025.53885 kPa
 Sfl x DF

ARROW ENERGY ABP Rail Crossing Calculation for

Client:

Project:

Job No: 41-24306

Appendix 2 -**Railway Crossing Calculation** DN1050

Client: ARROW ENERGY Project: ABP Calculation Title: Rail Crossing Calculation for ABP

Job No: 41-24306

Pipeline Conditions									
Type / OD (mm)	DN1050	1067.0							
Pipe Grade / SMYS (MPa)	X70	485							
Wall Thickness (tw)	19.6	mm							
Weld Type	Seamle	ss and ERW							
Design Pressure (MAOP)	10.20	MPa							
Buried Height	2000	mm							
Design Factor		0.72							
Installation Temperature	21	°C							
Max Operating Temperature	60	°C							
Min Operating Temperature	-10	°C							

Steel Properties									
Young's Modulus (E _s)	2.1E+08	kPa							
Coefficient of Thermal Exp. (a)	1.17E-05	per °C							
Poisson's Ratio (v _s)	0.30								

Enter value between 1800 and 4300. If pipe depth > 4300, enter 4300 (conservative)

0.72 is used for crossing calc as per AS2885.1-2007 Section 5.7.3 c) (i)

Pipeline Options			
Trenched Construction?	Other		
Soil Type / Description Soil Unit Weight	sands an 18.9	d gravels kN/m ³	and silts with low to medium plasticities; loose Recommended value from RP1102: 18.9
Single or Double Track Crossing?	Double		

	Pipeline			
Cyclic Circumferential				
stress	S-Hr	52419	kPa	
Cylic Long stress	S-Lr	38097	kPa	
Circumferential stress	S-Hi	272538	kPa	
Effective Stress	Seff (T2Min)	347631	kPa	
	Seff (T2Max)	320599	kPa	
				% of Allowable / Limit
Effectiv	ve stresses are v	vithin allo	wable limits.	99.6
Girth	weld stresses are	e within fa	atigue limits.	78
Longitudi	nal weld stresse	s are with	in fatigue limits.	33.13

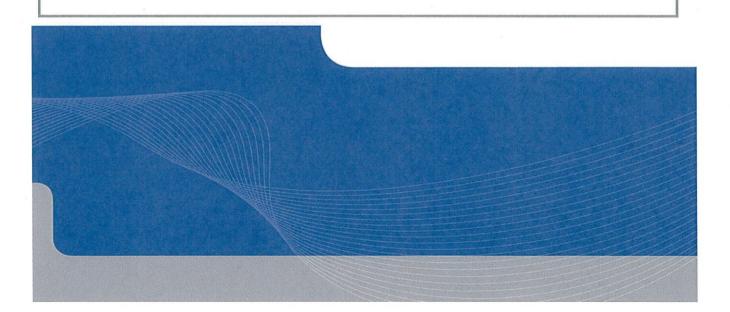
			Project		APPENDI
CLIENTS PEOPLE PERFORM	ANCE			: Rail Crossing Calculati	on for ABP Job No: 41-24306
			Calculation The	. Kall Crossing Calculati	300 NO. 41-24300
02 Rail Crossing Calculation					Input Data Input obtained from 1102 Figures/graphs
Input Data				RP1102 Calculated	
Design Pressure	MAOP	10.20	MPa	Other	•
Pipe Material	MAOI	X70	IVII a	H/Bd	1.79
Yield Strength	SMYS	485	MPa	tw/D	0.018
Outside Diameter	D	1067		Bd	
			mm		1118 D + 51mm if unknown, if trenched Bd = D
Wall thickness	tw	19.6	mm	Bd/D	1.05
Buried Height	H	2000	mm		
DF - for allowable stress	DF	0.72			
RP 1102 Soil Data					
	E'	3.4	MPa	2	
Soil Reaction Mod					DD1100
Soil Unit weight	<i>у</i> Г-	18.9	kN/m3	Recommended value from	n RP1102
Soil Resilient Mod	Er	34	MPa		
Fouth Logal					$\begin{pmatrix} t \end{pmatrix}$
Earth Load	K ha	0040			$K_{He} = f\left\{\frac{t_{w}}{D}, E'\right\}$ $B_{e} = f\left\{\frac{H}{B_{d}}\right\}$
Circ stiffness factor	K-he	3346		Obtained from figure 3	
Earth Burial factor	Be	0.54	Soil A	Obtained from figure 4	$B = f \left\{ \frac{H}{H} \right\}$
Earth Excavation factor	Ee	0.911		Obtained from figure 5	$B_e = J$ B_d
D	Be	33398.3	kPa		$E_{e} = f \left\{ \frac{B_{d}}{D} \right\}$
Earth Excavation factor	Ee				$E_{e} = f \left\{ \frac{n}{D} \right\}$
Live Load	w	96.0	kPa	96KPa as per Section 4.7	.2.2.1 1.
Impact Factor	Fi	1.711156667	DLA		
		1.1 11100001		De	fault calculated based on Figure 7 for railways, else use DLA (refer App W DR04561)
Railroad Cyclic Stresses					Dittereory
Stiffness factor	K-Hr	450 47		011 11 11 0	$\mathbf{r} = c \left(\mathbf{t}_{w} - \mathbf{r} \right)$
		452.47		Obtained from figure 8	$K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$
Geometry factor	G-Hr	0.553161376		Obtained from figure 9	
Circ Double Track factor	N-Hr	1.274939429		Obtained from figure 10	
Cyclic Circ stress	S-Hr	52419.2	kPa		
Long stiff factor	K-Lr	472.22724		Obtained from figure 11	
Long Geo factor	G-Lr	0.380625017		Obtained from figure 12	
Long Double Track factor	N-Lr	1.290275333		Obtained from figure 13	
Cylic Long stress	S-Lr	38097.1		Obtained nonnigure 15	
, ,	3-LI	50057.1	кга		P (D - tw)
Internal Pressure Stress	o				$S_{Hi} = \frac{1}{2} 1$
Circ stress	S-Hi	272537.7551	кРа		$S_{Hi} = \frac{P(D - tw)}{2 t_w}$
Chack for Allowable Stresses					
Check for Allowable Stresses		4 05 05			
Coeff thermal expansion	alpha	1.2E-05	•	Obtained from Table A1	
Young's Modulus Steel	Es	2.1E+08		Obtained from Table A1	
Installation Temperature	T1	21.0			
Max Operating Temperature	T2-max	60.0	°C	39.0	
Min Operating Temperature	T2-min	-10.0	°C	-31.0	
ΔT component at max T2		93,541.5	kPa	E*alpha*∆T	
ΔT component at min T2		-74,353.5	kPa	E*alpha*∆T	
Poisson's ratio of steel	VS	0.3			
Possion's component		91,780.8	kPa	v(S-he + S-hi)	
				_	
Max Circumferential stress	S1	358,355.3	kPa		$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$
High Temp Max Longitudinal stress	S2 (T2max)	36,336.4	kPa		$S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$
Low Temp Max Longitudinal stress	S2 (T2min)	204,231.4			$= L s i \leq 2 1 s \leq ne H(t)$
	(1)	_01,201.4	~~~~~		$S_3 = -P$
Max Radial stress	S3	-10,200.0	kPa		
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00	-10,200.0	Να		$S_{eff} = \sqrt{\frac{1}{2} [(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_3)^2]}$
Effective Stress	Seff (T2Max)	320,599.4	kPo		$ S_{eff} = \sqrt{\frac{1}{2}} [(S_1 - S_2)^2 + (S_2 - S_2)^2 + (S_2 - S_2)^2]$
Enective Suless	Seff (T2Max) Seff (T2Min)	320,599.4 347,631.1			$\mathbb{V}2^{1}$
	Geit (1∠Min)	347,031.1	NΓα	_	
Allowable Stress	Sa	349200	kPa	SMYS x DF	
	resses are with				
Ellective St			ining.		
Check for Fatigue					
	Sfa	405000	kDo		and from Table 0
Girth fatigue endurance limit	Sfg	485000		(Automatic Lookup) Obtai	nea from Table 3
check for S-Lr < Sfg x DF	dSL	38097	кРа		
Girth weld	stresses are w	ithin fatigue li	mits.		
Lange following and the second second	04	10000	1-D-		
Long fatigue endurance limit	Sfl	172369		Obtained from Table 3	
Long fatigue endurance limit check for S-Hr < Sfl x DF	Sfl	172369 124106	kPa	Obtained from Table 3 Sfl x DF	

 check for S-Hr < Sfl x DF</td>
 124106 kPa

 Longitudinal Wel Stresses
 41115.05346 kPa

 Longitudinal weld stresses are within fatigue limits.

Sfl x DF


Arrow Energy

Preliminary Calculation for Resistance to Penetration and Measurement Length for ABP 41-24306

Revision

Rev No.	Calculation By:	Checked By:	Approved By:	Description:	Date:
A	E Bart	T Mills	T Mills	Issued for Use for Preliminary SMS	25-Aug-11
в	R Turna	P Nasehmanesh	P Nasehmanesh	Issued for Use for Preliminary SMS	29-Sep-11
		R	-k		

Calculation Summary This calculation determines the minimum pipeline wall thickness with respect to its ability to resist to penetration by an excavator, as required by AS 2885.1-2007, for the ABP

Client: Project: Calculation Title:

Arrow Energy ABP **Resistance to Penetration**

Job No:

Introduction 1.

Arrow Energy (the Principal), is proposing to develop a pipeline network in central eastern Queensland that will deliver coal seam gas from its gas fields in the Bowen and Surat Basins to a proposed LNG facility to be located on Curtis Island near Gladstone. The proposed network will be approximately 1,200km long and will incorporate scraper stations and intermediate mainline valves.

A pipeline licence has been granted for the major part of the proposed pipeline from the Surat Basin, however an environment impact assessment of the initial 100km at the start of this pipeline, to the Kogan North Central Gas Processing Facility near Dalby in south-eastern Queensland, is required. No part of the proposed pipeline from the Bowen Basin has yet been assessed and this preliminary engineering is associated with the full extent of approx. 610km of pipeline length, the subject of a separate report.

The ABP system will consist of a DN800 (32"), Class 600 buried steel pipeline. This calculation also reflects a possible future upgrade of the ABP system to a DN1050 (42") pipe diameter.

The aim of this calculation is to determine the minimum pipeline wall thickness with respect to penetration resistance by excavators.

The design parameters are:

- DN800
-) DN1050 (possible upgrade)
- D API 5L X70
- MAOP/Design Pressure 10.2 MPa
- Design Temperature: -10 to 60°C

2. Design Basis and Scope

The basis for performing this calculation is in accordance with AS 2885.1-2007 Section 5.4.2, which requires numerous design, operation and constructability issues to be investigated and (where applicable) wall thickness values to be calculated. The wall thickness shall be the greatest of the values calculated.

The methods and equations will be used as they appear in the standard when determining the required wall thickness for the design pressure of 10.2MPa(g). The wall thickness required to prevent full bore rupture and limit the release rate to 10GJ/s will be a factor in the selection of pipe for high consequence areas.

The further requirements of AS2885.1 are covered in separate calculations.

Resistance to Penetration

Arrow Energy

ABP

3. Assumptions

3.1 Code Related Inputs

3.1.1 Specified Minimum Yield Strength

API Grade	SMYS (MPa)	UTS (MPa)
X 70	485	570 (minimum)

(Source: API 5L, Table 6)

3.1.2 Pressure Class & Pressure

A Maximum Allowable Operating Pressure (MAOP) of 10.2 MPa(g) is assumed.

3.2 Design Basis Inputs

3.2.1 Additional Allowances

The gas flowing through the pipeline is assumed to be 'Sales Gas' quality. Consequently the gas is deemed to be 'Non-Corrosive'. Therefore, the pipeline will have a corrosion allowance of 0 mm.

3.2.2 Location Classes

It is expected that the route will consist of both rural and high consequence areas. The high consequence areas may have a variety of location classes however their requirements are common and they will therefore be grouped together. For this preliminary calculation Sensitive areas (s) and T2 areas, which have a limiting release rate of 1GJ/s, have not been designed for in this calculation.

3.3 Calculation Inputs

The following inputs have been used for the calculations.

- Fracture Area 80 mm² at V-notch
- Voung's Modulus 205,000 MPa
- Charpy Impact Energy 90J (assumed value)
- B Factor 1.3 for High Consequence Areas. A value of 1.3 has been selected for conservatism over the equally credible value of 1.0
- Maximum discharge rate hole diameters (refer Appendix)
 10 GJ/s = 144 mm
- The expected gas composition used in this calculation was specified by Arrow Energy and is in the Design Basis (08-GHD-3-02-0045). To be conservative, the rich gas composition has been used.
- The largest credible excavator size is assumed to be 35 tonnes.

3.3.1 Charpy Impact Energy

The calculation determines wall thickness from an assumed Charpy value of 90J based on critical defect length. The wall thickness due to resistance to penetration has a low sensitivity to this value.

Client: Project: Calculation Title: Arrow Energy ABP Resistance to Penetration

Job No: 41-24306

4. Calculation Procedure

The calculation process requires numerous iterative steps. This calculation does not provide evidence of the iterative steps undertaken to produce the finally selected pipe wall thickness, but does provide the working for the selected thickness

4.2 Resistance to Penetration

AS 2885.1 outlines the method to evaluate the pipe's ability to resist penetration for standard excavator sizes and bucket tooth types. The excavator sizes outlined in the standard are as follows: 5, 10, 15, 20, 25, 30, 35, 40 & 55 tonne machines. The documented bucket teeth types are 'general purpose', single and twin 'tiger teeth' and 'penetrating tooth'.

The pipe's resistance to penetration for excavator threats is calculated using Equation M3 (AS 2885.1).

The force exerted by a bucket (F_{BUCKET}) is calculated using Equation M4. The 'B' factor is applied to obtain the maximum force assuming the worst possible geometry (F_{MAX}), which varies between 0.75 and 1.3. Refer Equation M2.

The maximum force exerted on the pipe from a bucket and excavator combination can then be compared with the force required to penetrate the pipe, ultimately determining if the excavator's tooth can penetrate the pipe.

4.3 Critical Defect Length

The critical defect length (CDL) is the axial length of a defect that just exceeds the pipes ability to retain a flaw, such that the defect grows causing the pipe to rupture. The critical defect length is dependent on the pipeline parameters (diameter, grade, wall thickness) and the instantaneous operating pressure.

Calculating the critical defect length allows the type of failure mode to be determined by comparing the critical defect length with the maximum defect length an excavator can produce (L max). If the critical defect length is greater than the excavator defect length, then the defect will not grow and the failure mode is LEAK. In contrast, if the critical defect length is smaller than the excavators defect length, then the failure mode is RUPTURE. As per AS2885.1, the critical defect length must be at least 150% of the maximum defect length for the pipe to be considered No Rupture.

The method used to calculate the critical defect length for lower toughness steels is given in Section 4.8.5 – Critical Defect Length (AS 2885.1). This approach is an iterative process. A MS Excel spreadsheet was developed to solve the equations.

The following Equations from AS 2885.1-2007 have been utilised:

- Equation 4.8.5(2);
- Equation 4.8.5(4);
- Equation 4.8.5(5);
- Equation 4.8.5(3).

Job No: 41-24306

4.4 Special Provisions for High Consequence Areas

4.4.1 No Rupture

AS 2885.1 Clause 4.7.2 specifies that the pipeline shall be designed such that rupture is not a credible failure mode for the following location classes: T1, T2, I, S (and HI areas with the potential for an escalation in consequences). The Safety Management Study (risk assessment) will determine if the pipeline route passes through any of the aforementioned High Consequence Areas.

No Rupture is achieved by one of the following:

- The hoop stress shall not exceed 30% of SMYS or;
- The largest equivalent defect is determined for the location class, and the hoop stress at MAOP is selected such that the critical defect length is not less than 150% of the axial length of the largest equivalent defect. This is conservatively applied to part-through wall defects, ie it assumes that non-leaking defects, of sufficient size, can still lead to rupture. This approach is approporiate for the purposes of preliminary calculations.

4.4.2 Maximum Discharge Rate

AS 2885.1 (Section 4.7.3) specifies that the maximum allowable discharge rate shall not exceed 10 GJ/s in Residential (T1), Industrial (I) and some heavy Industrial (HI) location classes.

Sensitive (S) locations shall be limited to 1 GJ/s, however these are not considered in this preliminary calculation.

5. Calculation Results

5.1 Resistance to Penetration

The results of the resistance to penetration calculation, summarised and tabled below, show that the High Consequence pipe cannot be penetrated by a 35T excavator irrespective of tooth type. The wall thickness for pipe in High Consequence areas was set by the CDL requirements listed in Section 5.2

General P	urpose Too	oth										
							Exca	ator V	leight			
	Pipe Wall 1	Thickness		5T	10T	15T	20T	25T	30T	35T	40T	55T
High Cons.	68.40%	12.5 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass

DN800

Twin Tiger Tooth

					Exca	ator V	/eight					
	Pipe Wall 1	Thickness		5T	10T	15T	20T	25T	30T	35T	40T	55T
High Cons.	68.40%	12.5 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Single Penetration Tooth

							Excav	ator W	/eight			
	Pipe Wall 1	Thickness		5T	10T	15T	20T	25T	30T	35T	40T	55T
High Cons.	68.40%	12.5 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Leak	Leak

Project: Calculation Title:

Client:

Arrow Energy ABP Resistance to Penetration CALCULATION

Single Tiger Tooth

					Excavator Weight							
	Pipe Wall T	hickness		5T	10T	15T	20T	25T	30T	35T	40T	55T
High Cons.	68.40%	12.5 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Leak	Leak

DN1050 (possible upgrade)

General Purpose Tooth

							Exca	ator V	leight			
	Pipe Wall	Thickness		5T	10T	15T	20T	25T	30T	35T	40T	55T
High Cons.	77.20%	14.53 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Twin Tiger Tooth

						Excavator Weight							
	Pipe Wall 1	Thickness		5T	10T	15T	20T	25T	30T	35T	40T	55T	
High Cons.	77.20%	14.53 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

Single Penetration Tooth

							Exca	ator V	Veight			
	Pipe Wall	Thickness		5T	10T	15T	20T	25T	30T	35T	40T	55T
High Cons.	77.20%	14.53 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Leak

Single Tiger Tooth

							Excav	ator V	/eight			
	Pipe Wall 1	Thickness		5T	10T	15T	20T	25T	30T	35T	40T	55T
High Cons.	77.20%	14.53 mm	B = 1.3	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Leak

5.2 Special Provisions for High Consequence Areas

A 35 tonne excavator has been assumed to be the largest credible excavator size that could potentially impact the pipeline using any of the four tooth types.

5.2.1 Critical Defect Length

DN800

Critical Defect Lengths								
	Wall	Design Factor	Charpy Impact	Critical Defect Length				
	Thickness (mm)	(incidental)	Energy	(mm)				
High Cons.	12.50 mm	68.40%	90 J	166.5 mm				

DN1050 (possible upgrade)

Critical Defect Lengths								
	Wall Thickness (mm)	Design Factor (incidental)	Charpy Impact Energy	Critical Defect Length (mm)				
High Cons.	14.53 mm	77.20%	90 J	166.4 mm				

5.2.2 No Rupture

The No Rupture wall thickness for High Consequence pipe is tabulated below. Even though the pipeline cannot be penetrated by a 35 tonne excavator, the No Rupture requirements for 150% CDL have been applied. Consideration has not been given to Facilities and Road / Rail crossing pipe which can occur within a High Consequence Area, however it is envisaged that wall thicknesses and subsequently CDL would be larger.

High Consequence Pipe (12.5mm) DN800

Tooth Type	Tooth Hole Diameter	Critical Defect	CDL% of Hole Size
General Purpose	110 mm	166.5 mm	151%
Twin Tiger	110 mm	166.5 mm	151%
Single Tiger	30 mm	166.5 mm	555%
Penetration	80 mm	166.5 mm	208%

High Consequence Pipe (14.53mm) DN1050

35 Tonne Excavator **Tooth Type Tooth Hole Diameter Critical Defect** CDL% of Hole Size **General Purpose** 110 mm 151% 166.4 mm Twin Tiger 110 mm 166.4 mm 151% Single Tiger 30 mm 166.4 mm 555% Penetration 80 mm 166.4 mm 208%

It can be seen that the worst case is for single point contact from a general purpose or tiger tooth bucket and it has been found that 12.5 mm thick pipe for the DN800 and 14.53 mm thick pipe for the DN1050 are required to (just) satisfy the 150% rule.

Client: Project: Calculation Title: Arrow Energy ABP Resistance to Penetration CALCULATION

Job No: 41-24306

5.2.3 Maximum Discharge Rate

Calculations (shown in the appendix) to determine the energy discharge rate show that the hole size to produce an energy discharge rate of 10 GJ/s, is approximately 144 mm, which is larger than the maximum tooth diameter for a 35 tonne excavator. The equations and graphs used are valid for sales quality natural gas at typical ambient air temperatures, discharged through an orifice under choked flow conditions and have been taken from Appendix Y of AS2885.1. These equations are typically only used if the hole size is less than 25% of the pipeline diameter as they become increasing conservative with increasing percentage of hole size to diameter. As the results indicate that the hole size is less 25% of the pipeline diameter yalid.

The hole size required to produce an energy dischage rate of 1 GJ/s, has been calculated to be approximately 46 mm (shown in the appendix). The largest defect caused by a 35 tonne excavator (equipped with twin tiger teeth) is 110 mm (refer to Table M3, Appendix M of AS 2885.1 – 2007), which is clearly greater than the required hole size for limiting energy release rate of 46 mm in a T2 location class zone. However the results above show that the pipeline is not penetrated for an excavator size of up to 35 tonnes (the maximum credible threat) and as such the pipeline meets the requirements of limiting energy release rates in a T2 location class zone.

Please note this calculation is not dependent on pipe size and is applicable to both the DN800 and DN1050 pipe sizes.

5.3 Measurement Length

Measurement length is defined in AS2885.1 as the radius of the 4.7 kW/m2 radiation contour for a full bore rupture. It is calculated in accordance with Clause 4.10

The hand calculation appended uses the method of AS2885 Appendix Y to calculate a measurement length of 900m. To be conservative, a measurement length of 1100m for the DN800 will be used in the initial SMS workshop.

In addition, for a possible future upgrade of the ABP to DN1050 pipe size, the measurement length is approximated to be 1250m.

6. Conclusion

The wall thicknesses summarised below meet the resistance to penetration requirements. Note that there is some conservatism in this calculation.

	<u>DN800</u>	
Location	Minimum Wall Thickness	Comments
High Consequence	12.5 mm	 No penetration No Rupture governs WT (for credible 35 tonne excavator) Max discharge rates are acceptable

Client: Project: Calculation Title: Arrow Energy ABP Resistance to Penetration

Job No: 41-24306

CALCULATION

DN1050 (possible upgrade)

Location	Minimum Wall Thickness	Comments
High Consequence	14.5 mm	 No penetration No Rupture governs WT (for credible 35 tonne excavator) Max discharge rates are acceptable

Client: Project: Calculation Title:

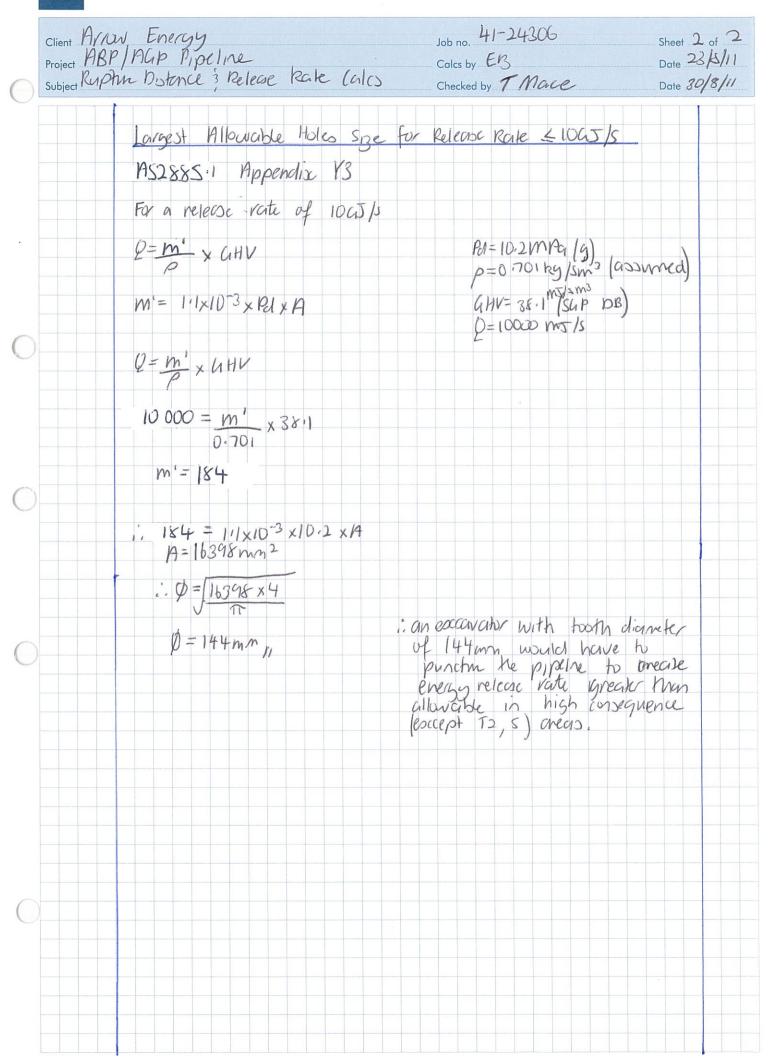
Arrow Energy ABP Resistance to Penetration

Job No:

41-24306

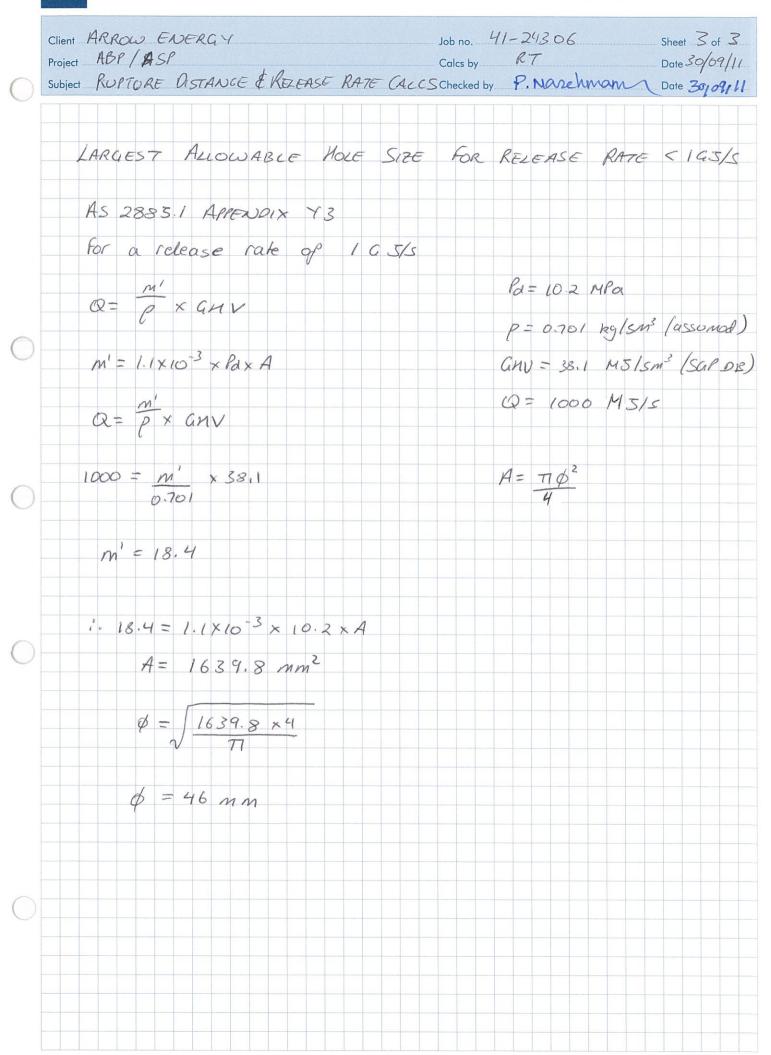
CALCULATION

Appendix Supporting Calculations



CALCULATIONS

Client AVION	AGP pipeine	Job no. 41-24306	Sheet 1 of 2
Project MBP Subject RUP	ture Distance is Reliance Rate	Calcs by ER (GIW Checked by Comfin	Date 23/8/11 Date 30/8/11
	Energy Release Raite for Maa	cimum Credible Threat	
	From AS2885-1 Appendix	43	
	Greatest threat hole size is filled with twin typer teeth penchrane)	110 mm \$ from 35 T exca (if escalator was able to	vator
V3 A22885	$Q = \frac{W}{P} \times GHV$	$P_{d} = 10.2 m P_{g}(g)$ $A = \pi x SS^{2} = 9503 r$	2
	$m' = 1 \cdot 1 \times 10^{-3} \times Pd \times A$	$p = 0.701 \text{ kg/sm}^3 \text{ (a=} \text{GHV} = 38.1 \text{ (SGP DR})$	Duned)
	$Q = \frac{1}{11 \times 10^{-3} \times 10^{-2} \times 9503}{0.101} \times 3^{-3}$	8,1	Energy release
	Q = 5.8 GJ/s		creduble the could punche s.895/s.
			21
	Exclusion Zone Full Bore 1 From AS 2885 Appendix Y	Ruptime (measurement leng.	
	Assure typical pipeline paran		
	For a pressure of 10.2 mp		
	Extrapoletion was used for 4	17kW/m2. line.	
Y2 1452885	DN 800 line - Roliahon Unt	our Rections = 900m	
	DN950 Ine - Radicition W	nbw Radius = 1100m	
	To be conservative valiation were used in the report.	n contours larger than th	ese
0			· · · · · · · · · · · · · · · · · · ·



CALCULATIONS

CLIENTS PEOPLE PERFORMANCE

CALCULATIONS

GHD ci

CLIENTS PEOPLE PERFORMANCE

CALCULATION

Arrow Energy

Calculation for ABP Road Crossing Calculation 41-24306

Revision

Rev No.	Calculation By:	Checked By:	Approved By:	Description:	Date:
140.	Galculation Dy.	Officerica by.	Approved by.	Issued For Use	
A	E Bart	A Mills	A Mills	in Preliminary SMS	22-Aug-11
в	R Turna	P Nasehmanesh	P Nasehmanesh	Issued For Use	29-Sep-11
	i i i i i i i i i i i i i i i i i i i	i Naseriniariesii	1 Maschinaricsh	in Preliminary SMS	23-3ep-11
		p~	p		
	Concerning Concerning Concerning				

Calculation Summary

This calculation determines the minimum pipeline wall thickness for road crossings beneath open-cut paved highways and unpaved roads for the ABP in accordance with AS 2885.1, API RP1102 and "Guidelines for the Design of Buried Steel Pipe" by the American Lifeline Alliance.

CALCULATION

Job No:

41-24306

1. Introduction

1.1 Background

Arrow Energy (the Principal), is proposing to develop a pipeline network in central eastern Queensland that will deliver coal seam gas from its gas fields in the Bowen and Surat Basins to a proposed LNG facility to be located on Curtis Island near Gladstone. The proposed network will be approximately 1,200km long and will incorporate scraper stations and intermediate mainline valves.

A pipeline licence has been granted for the major part of the proposed pipeline from the Surat Basin, however an environment impact assessment of the initial 100km at the start of this pipeline, to the Kogan North Central Gas Processing Facility near Dalby in south-eastern Queensland, is required. No part of the proposed pipeline from the Bowen Basin has yet been assessed and this preliminary engineering is associated

with the full extent of approx. 610km of pipeline length, the subject of a separate report.

The ABP system will consist of a DN800 (32"), Class 600 buried steel pipeline. This calculation also reflects a possible future upgrade of the ABP system to a DN1050 (42") pipe diameter.

1.2 Objectives

This calculation is in response to Arrow's request for GHD to determine the wall thickness required for the DN800 and DN1050 Pipeline. It specifically ascertains the minimum wall thickness for road crossings based on whether the pipeline can safely withstand the additional stresses induced by vehicles orthogonally traversing it. The worst case design scenarios will be examined for both occasional and designated crossings.

1.3 Methodology

The calculations performed will follow the method outlined in API RP1102 "Steel Pipelines Crossing Railroads and Highways" for burial depths of 900mm and greater. Burial depths of less than 900mm "Guidelines for the Design of Buried Steel Pipe" by the American Lifeline Alliance. AS2885.1 2007 will also be utilised.

The RP1102 calculation involves three main checks. The total effective stress experienced by the pipeline due to internal pressure, forces imparted by the overlying soil and forces imparted by vehicles is compared to the pipeline's specified minimum yield strength. Checks are also performed to ensure that cyclic stresses experienced in the girth welds and longitudinal welds are below the stress limit for fatigue.

2. Input Data / Assumptions

2.1 Pipeline Parameters

Installed Temperature	21°C (assumed)
(Assumption 2)	
Design Pressure	10.2 MPa
Max Operating Temperature (Assumption 2)	60°C
Min Operating Temperature (Assumption 2)	-10°C
OD	813 mm
OD (possible upgrade)	1067 mm
Pipe Grade / SMYS	X70
Ріре Туре	ERW (assumed)
RP1102 Design Factor	0.90 for occasional crossings 0.72 for designated crossings

2.2

CLIENTS PEOPLE PERFORMANCE

Client: Arrow Energy Project: ABP Calculation Title: Road Crossing Calculation

CALCULATION

Job No:

41-24306

Steel Parameters

Young's Modulus (Es)	205,000 MPa
Coefficient of Thermal Exp. (α)	1.17E-05
Poisson's Ratio	0.30

2.3 Soil Parameters

The soil type selected for the calculation was: Soft to medium clays and silts with low to medium plasticities; (loose sands and gravels). A soil density of 18.9 kN/m3 was chosen based on RP1102 recommendations. Refer to assumptions below.

Specific information regarding crossings has not yet been determined. Typical values for the pipelines burial depth at crossings has therefore been used.

Soil Type:	Soft to medium clays and silts with low to medium plasticities; loose sands and gravels
Soil Density	18.9 kN/m3
Buried Depth to Top of Pipe	750mm, 900mm, 1200mm, 1500mm, 2000mm

2.4 Vehicle Parameters

Detailed information regarding specific axle loads that may cross the pipeline are yet to be determined however this calculation utilises the recommendations from AS2885.1, which equates to a load of approximately 16 tonnes per axle.

Description	Wheel Load (kN)	Wheel Contact Area (m ²)
W80 (single axle)	80	0.10
M1600 (tandem axle)	60	0.08

The M1600 tandem axle wheel load will always be the worse case when using API RP1102 and therefore calculations will be performed for only this wheel loading configuration for burial depths of 900mm and above. When using the "Guidelines for the Design of Buried Steel Pipe" the worse case is the single axle load and therefore calculations will be performed only for this wheel loading configuration for a burial depth of 750mm.

2.5 Assumptions

- 1 The 'Soft to medium clays and silts with low to medium plasticities; loose sands and gravels' soil type was assumed as recommended in Section 4.7.2.1 of RP1102. These parameters are generally conservative. Note that geotechnical data isn't available for the actual sites.
- ² The pipe minimum and maximum operating temperatures as well as the installation temperature are assumed to be equivalent to the minimum and maximum gas temperatures as referenced in the SGP Basis of Design (08-GHD-3-02-0045). The calculations are very sensitive to temperature.
- 3 As an unsealed surface does not spread the load as well as a sealed surface it will be used as the design input for 'pavement type'. This will produce slightly conservative results for the major road crossings with engineered pavements.

Exclusions

This calculation report excludes special crossings.

Client: Arrow Energy Project: ABP Calculation Title: Road Crossing Calculation

CALCULATION

Job No:

41-24306

4. Results Summary

DN800

D,			MAOP (MPa(g))	Wheel Load (kN)	Depth of Coverage (mm)	Axle Type	Pavement	RP1102 Design Factor	Wall Thickness (mm)	Notes
e b s	₩.	sing	10.2	60	900	Tandem	No Pavement	0.9	10.3	M1600 design load
i d g	cas	Cros	10.2	60	2000	Tandem	No Pavement	0.9	11.0	M1600 design load
n s	nated	sing	10.2	60	1200	Tandem	No Pavement	0.72	13.6	M1600 design load
	Designated	Cros	10.2	60	1500	Tandem	No Pavement	0.72	13.8	M1600 design load

DN1050 (possible upgrade)

D			MAOP (MPa(g))	Wheel Load (kN)	Depth of Coverage (mm)	Axle Type	Pavement	RP1102 Design Factor	Wall Thickness (mm)	Notes
e s		ssional ssing	10.2	60	900	Tandem	No Pavement	0.9	13.4	M1600 design load
1 i	a d	Occass	10.2	60	2000	Tandem	No Pavement	0.9	14.3	M1600 design load
n	s	nated sing	10.2	60	1200	Tandem	No Pavement	0.72	17.8	M1600 design load
		Designated Crossing	10.2	60	1500	Tandem	No Pavement	0.72	18.0	M1600 design load

As previously mentioned a separate method and guidelines were used for burial depths less than 900mm. According to this method, at a burial depth of 750mm, a wall thickness in excess of 11.0mm for DN800 and 13.0mm for DN1050 is needed to protect the integrity of the pipeline and procedural controls will be required to control the occurrence of the 80kN load at random "occasional" crossings along the route. No attempt will be made to increase the R1/R2 locations wall thickness in order to resist such loads.

Detailed Results are shown in the Appendix

It is noted that the RP1102 calculation calls for higher wall thickness at deeper covers for any given wheel load. This counterintuitive result has been encountered before and is a function of the way in which the method penalises increasing soil weight at a faster rate than it credits decreasing wheel load intensity as depth increases.

5. Conclusion

The primary objective of this report was to determine the minimum wall thickness required for Arrow's DN800 and DN1050 pipeline to safely withstand the stress induced by design vehicles orthogonally traversing it. Calculations were performed in line with API RP1102, AS 2885.1-2007 and Guidelines for the Design of Buried Steel Pipe. The calculation determined that the minimum allowable wall thickness for occasional crossings is 11.0mm for DN800 and 14.3mm for DN1050 at depths of 900mm and greater. It is recommended that this combination of 11.0mm/14.3mm and 900mm be used globally in an effort to provide resistance to vehicular loads. If the pipe were to be buried at a depth smaller than 900mm, additional procedural controls will be required.

This calculation determined that the minimum wall thickness for designated road crossings is 13.8mm for DN800 and 18.0mm for DN1050. In the event that specific road crossings and loads are identified at a later stage, additional protection measures such as concrete slabs should be considered.

6. References

API RP1102 - Steel Pipelines Crossing Railroads and Highways AS 2885.1 - Pipelines - Gas and Liquid Petroleum Part 1: Design and Construction, Appendix V Guidelines for the Design of Buried Steel Pipe - American Lifeline Alliance.

		Client:	Arrow Energy	CA	LCULATION
CHD	CLIENTS PEOPLE PERFORMANCE	Project:	ABP		
GIL	OLIENTS FEOTEE FEIT ONMANDE	Calculation Title:		Job No:	41-24306
			Road Crossing Calculation		

Appendix 1 - Calculation Summary DN800

DN800 - Occasional Crossing - 900mm Burial Depth - No Pavement, tandem Axle

	Pipeline Conditions		
	Type / OD (mm)	DN800	813.0
	Pipe Grade / SMYS (MPa)	X70	485.0
	Wall Thickness (tw)	10.3	mm
	Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
	Design Pressure (MAOP)	10.20	MPa
##	Buried Height	900	mm
	Design Factor	0.9	
	Installation Temperature	21	°C
	Max Operating Temperature	60	°C
	Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,000,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v _s)	1.17E-05 0.3	per °C

Pipeline Options		
Trenched Construction?	Trenched	
Soil Type / Description	Soft to medium clays and silts with low to medium plasticities; loose sands and gravels	Fo
Soil Unit weight	18.9 kN/m ³ Recommended value from RP1102: 18.9	res
Pavement & Axle Type Wheel Pressue	No Pavement, tandem Axle 750 kPa	

For soil types Soft to medium clays and silts with high plasticities & Soft to medium clays and silts with low to medium plasticities; loose sands and gravels the resilient modulus, Er, is assumed to be 34 MPa

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section $\,$ 5.7.3 c)

Girth w	e stresses are within a veld stresses are within al weld stresses are w	n fatigue lim	its.	99.2 22.8 16.7
Effortiv	e stresses are within a	ulowable lim	nite	% of Allowable / Limit 99.2
ALLOWABLE STRESS		436,500	kPa	
	Seff (T2min)	398,583	kPa	
Effective Stress	Seff (T2max)	433,032	kPa	
Circular stress	S-Hi	397,453	kPa	
Cylic Long stress	S-Lh	16,958	kPa	
Cyclic Circular stress	S-Hh	25,902	kPa	

RP1102 Road Crossing Calculation DN800 - Occasional Crossing - 900mm Burial Depth - No Pavement, tandem Axle

				ing - Soonin Bunai Deptil - No i	
Input Data				RP1102 Calculated/Input Data	
Design Pressure	MAOP	10.20	MPa	Trenched	Trenched Construction/Other ?
Pipe Material		X70	-	H/Bd 1.11	
Yield Strength	SMYS	485	MPa	tw/D 0.013	
Outside Diameter	D	813	mm	Bd 813 mm	D + 51mm if unknown, if trenched Bd = D
Wall thickness	tw	10.3	mm	Bd/D 1.00	
Pipe Type		SMLS / ERW		Bd/B 1.00	
				No Development to a development	
Buried Height	H	900	mm	No Pavement, tandem Axle	Tandem Select pavement type and hence axle configuration from Table 1
DF - for allowable stress	DF	0.9	%	R <u>1.1</u>	Select from Table 2
				L 1	Select from Table 2
RP 1102 Soil Data					
Soil Type		Soft to medium		ts with low to medium plasticities;	; loose sands and gravels
Soil Reaction Mod	E'	3.4	MPa	2	
Soil Unit weight	У	18.9	kN/m3	Recommended value from RP1102	
Soil Resilient Mod	Er	34	MPa	Assumption based upon soil type	
			-		
Earth Load					$\begin{split} K_{He} &= f\left\{\frac{t_w}{D}, E^*\right\} \\ B_e &= f\left\{\frac{H}{B_d}\right\} \end{split}$
Circ stiffness factor	K-he	5267.92	٦	Obtained from figure 3	$K_{He} = \int D^{L} D$
Earth Burial factor	Be	0.3297	Soil A	Obtained from figure 4	(H)
Earth Excavation factor	Ee	1.0000	0017	Obtained from figure 5	$B_e = f\left\{\frac{1}{D}\right\}$
				Obtained from ligure 5	$\begin{bmatrix} B_d \end{bmatrix}$
Earth Load	S-he	26686.6	kPa		$E_{e} = f\left\{\frac{B_{d}}{D}\right\}$
Live Load	_	-			
Axle Load	Pa	0	tonnes/axle		load. If chosen value results in design wheel load <
				80kN, 80kN is used in accordance with	recommendation in AS2885.1 V4
Tandem axle wheel load	Pt	0	tonnes	insert value if known	
Single axle wheel load	Ps	0	tonnes	insert value if known	
Design wheel load	Р		kN	Based on selection of tandem or single	per above
Wheel contact area	Ар	0	m2	Default figure is from RP11	102 (0.093m2), user can select otherwise
Live Load	w	750.0	kPa	<u>j</u>	
Impact Factor	Fi	1.5	DLA:	Default calculated based o	on Figure 7 for highways, else use DLA (refer App W of DR04561) 1.5
impuot i dotoi		1.0	DER.		
Highway Cyclic Stresses					
Circ Highway stiff factor	K-Hh	20.63		Obtained from figure 14	
• •				-	
Circ Highway Geo factor	G-Hh	1.01		Obtained from figure 15	
Cyclic Circ stress	S-Hh	25901.8	kPa		$(t_{w}, -)$
Long Highway stiff factor	K-Lh	14.8699		Obtained from figure 16	$K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$
Long Highway Geo factor	G-Lh	0.9216		Obtained from figure 17	
Cylic Long stress	S-Lh	16958.3	kPa		D(D +)
Internal Pressure Stress					$S = \frac{P(D - I_w)}{P(D - I_w)}$
Circ stress	S-Hi	397453.3981	kPa		$S_{H} = \frac{P(D - t_{v})}{2t}$
					- ' '
Check for Allowable Stress	ses				
Coeff thermal expansion	alpha	1.2E-05	per °C	Obtained from Table A1	
Young's Modulus Steel	Es	2.05E+08	kPa	Obtained from Table A1	
Installation Temperature	T1	21.0	°C		
Max Operating Temperature	T2-max	60.0	°C		
Min Operating Temperature					
	T2-min	-10.0			
AT component at max T?	T2-min	-10.0 93.541.5	°C	F*aloba*∆T	
ΔT component at max T2 ΔT component at min T2	T2-min	93,541.5	℃ 5 kPa	E*alpha*∆T F*alpha*∆T	
ΔT component at max T2 ΔT component at min T2	T2-min		℃ 5 kPa	E*alpha*∆T E*alpha*∆T	
ΔT component at min T2		93,541.5 -74,353.5]℃ 5 kPa 5 kPa		
ΔT component at min T2 Poisson's ratio of steel	T2-min vs	93,541.5 -74,353.5 0.3]°C 5 kPa 5 kPa 3	E*alpha*∆T	
ΔT component at min T2		93,541.5 -74,353.5]°C 5 kPa 5 kPa 3		
ΔT component at min T2 Poisson's ratio of steel Possion's component	VS	93,541.5 -74,353.5 0.3 127,242.0]℃ 5 kPa 5 kPa 3 3) kPa	E*alpha*∆T	$S = S + \Delta S + S$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress	vs S1	93,541.5 -74,353.5 0.3 127,242.0 450,041.8] ℃ 5 kPa 5 kPa 5 kPa 3 kPa 3 kPa	E*alpha*∆T	$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$
ΔT component at min T2 Poisson's ratio of steel Possion's component	vs S1 S2 (T2max)	93,541.£ -74,353.£ 0.3 127,242.0 450,041.£ 50,658.£] ℃ 5 kPa 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa	E*alpha*∆T	
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress	vs S1 S2 (T2max) S2 (T2min)	93,541.£ -74,353.£ 127,242.0 450,041.£ 50,658.£ 218,553.£] ℃ 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa	E*alpha*∆T	$\frac{S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}}{S_2 = \Delta S_L - E_s \alpha_r (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress	vs S1 S2 (T2max)	93,541.£ -74,353.£ 0.3 127,242.0 450,041.£ 50,658.£] ℃ 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa	E*alpha*∆T	
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress	vs S1 S2 (T2max) S2 (T2min)	93,541.£ -74,353.£ 127,242.0 450,041.£ 50,658.£ 218,553.£] ℃ 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa	E*alpha*∆T	$\overline{S_2 = \Delta S_L - E_s \alpha_s (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress	vs S1 S2 (T2max) S2 (T2min)	93,541.£ -74,353.£ 127,242.0 450,041.£ 50,658.£ 218,553.£] ℃ 5 kPa 3] 3) 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa	E*alpha*∆T	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max)	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0 433,031.8] ℃ 5 kPa 5 kPa 3) 0 kPa 3 kPa 3 kPa 3 kPa 0 kPa 3 kPa	E*alpha*∆T	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress	vs S1 S2 (T2max) S2 (T2min) S3	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0] ℃ 5 kPa 5 kPa 3) 0 kPa 3 kPa 3 kPa 3 kPa 0 kPa 3 kPa	E*alpha*∆T	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min)	93,541.5 -74,353.5 127,242.0 450,041.6 50,658.8 218,553.6 -10,200.0 433,031.8 398,583.4] ℃ 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa	E*alpha*∆T	$\overline{S_2 = \Delta S_L - E_s \alpha_s (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0 433,031.8 398,583.4 436500] ℃ 5 kPa 5 kPa 3] 0 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 0 kPa	E*alpha*∆T v(S-he + S-hi) 	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa	93,541.5 -74,353.5 127,242.0 450,041.6 50,658.8 218,553.6 -10,200.0 433,031.8 398,583.4] ℃ 5 kPa 5 kPa 3] 0 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 0 kPa	E*alpha*∆T v(S-he + S-hi) 	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0 433,031.8 398,583.4 436500] ℃ 5 kPa 5 kPa 3] 0 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 0 kPa	E*alpha*∆T v(S-he + S-hi) 	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0 433,031.8 398,583.4 436500] ℃ 5 kPa 5 kPa 3] 0 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 0 kPa	E*alpha*∆T v(S-he + S-hi) 	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0 433,031.8 398,583.4 436500] ℃ 5 kPa 5 kPa 3] 0 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 0 kPa	E*alpha*∆T v(S-he + S-hi) 	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa Effective stress	93,541.5 -74,353.5 127,242.0 450,041.6 50,658.6 218,553.6 -10,200.0 433,031.6 398,583.4 436500 sses are within a] ℃ 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 4 kPa 3 kPa 4 kPa 3 kPa 3 kPa 3 kPa 3 kPa	E*alpha*∆T v(S-he + S-hi) SMYS x DF its	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa Effective stress	93,541.5 -74,353.5 0.3 127,242.0 450,041.6 50,658.6 218,553.6 -10,200.0 433,031.6 398,583.4 436500 sses are within a] ℃ 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 3 kPa 4 kPa 3 kPa 4 kPa	E*alpha*∆T v(S-he + S-hi) SMYS x DF its. Ok	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2man) Sa Effective stress	93,541.5 -74,353.5 0.3 127,242.0 450,041.6 50,658.8 218,553.8 -10,200.0 433,031.8 398,583.4 436500 sses are within a 82737 74463.4] ℃ 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 4 kPa allowable lim kPa	E*alpha*∆T v(S-he + S-hi) SMYS x DF its. OK Obtained from Table 3 Sfg x DF	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa Effective stress s Sfg Girth weld str	93,541.5 -74,353.5 0.3 127,242.0 450,041.6 50,658.8 218,553.6 -10,200.0 433,031.6 398,583.4 436500 sses are within a 82737 74463.4 resses are withi] ℃ 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 4 kPa 4 kPa allowable lim kPa kPa n fatigue limi	E*alpha*∆T v(S-he + S-hi) SMYS × DF its. ok Obtained from Table 3 Sfg × DF its. ok	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF Long fatigue endurance limit	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa Effective stress s Sfg Girth weld str	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0 433,031.8 398,583.4 436500 sses are within a 82737 74463.4 resses are withi 172369	 C 5 kPa 5 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa 4 kPa allowable limi kPa n fatigue limi kPa 	E*alpha*∆T v(S-he + S-hi) SMYS x DF its. OK Obtained from Table 3 Sfg x DF	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF Long fatigue endurance limit check for S-Hh < Sfg x DF	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa Effective stress t Sfg Girth weld stress	93,541.5 -74,353.5 0.3 127,242.0 450,041.6 50,658.6 218,553.6 -10,200.0 433,031.6 398,583.4 436500 sses are within a 82737 74463.4 resses are within 172369 155132	 C 5 kPa 5 kPa 6 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa allowable limi kPa kPa kPa kPa kPa 	E*alpha*∆T v(S-he + S-hi) SMYS x DF its. OK Obtained from Table 3 Sfg x DF its. Ok Obtained from Table 3	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$
ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF Long fatigue endurance limit check for S-Hh < Sfg x DF	vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa Effective stress t Sfg Girth weld stress	93,541.5 -74,353.5 127,242.0 450,041.8 50,658.8 218,553.8 -10,200.0 433,031.8 398,583.4 436500 sses are within a 82737 74463.4 resses are withi 172369	 C 5 kPa 5 kPa 6 kPa 3 kPa 3 kPa 3 kPa 3 kPa 3 kPa 4 kPa allowable limi kPa kPa kPa kPa kPa 	E*alpha*∆T v(S-he + S-hi) SMYS x DF its. OK Obtained from Table 3 Sfg x DF its. Ok Obtained from Table 3	$\boxed{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$ $\boxed{S_3 = -P}$

DN800 - Occasional Crossing - 2000mm Burial Depth - No Pavement, tandem Axle

	Pipeline Conditions		
	Type / OD (mm)	DN800	813.0
	Pipe Grade / SMYS (MPa)	X70	485.0
	Wall Thickness (tw)	11	mm
	Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
	Design Pressure (MAOP)	10.20	MPa
##	Buried Height	2000	mm
	Design Factor	0.9	
	Installation Temperature	21	°C
	Max Operating Temperature	60	°C
	Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,000,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v _s)	1.17E-05 0.3	per °C

Pipeline Options				
Trenched Construction?	Trenched			
Soil Type / Description	Soft to medium plasticities; loc	· · · · · · · · · · · · · · · · · · ·	silts with low to medium d gravels	Fo
Soil Unit weight	18.9	kN/m ³	Recommended value from RP1102: 18.9	m
Pavement & Axle Type Wheel Pressue	No Pavement, 750	tandem Axle kPa	9	

_

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section $\,$ 5.7.3 c)

For soil types Soft to medium clays and silts with high plasticities & Soft to medium clays and silts with low to medium plasticities; loose sands and gravels the resilient modulus, Er, is assumed to be 34 MPa

Pipeline Results				
Cyclic Circular stress	S-Hh	17,841	kPa	
Cylic Long stress	S-Lh	13,393	kPa	
Circular stress	S-Hi	371,836	kPa	
Effective Stress	Seff (T2max)	428,737	kPa	
	Seff (T2min)	393,886	kPa	
ALLOWABLE STRESS		436,500	kPa	
				% of Allowable / Limit
Effectiv	e stresses are within a	allowable lin	nits.	98.2
Girth w	eld stresses are within	n fatigue lim	its.	18.0
Longitudin	al weld stresses are w	ithin fatigue	limits.	11.5

RP1102 Road Crossing Calculation DN800 - Occasional Crossing - 2000mm Burial Depth - No Pavement, tandem Axle

Input Data				RP1102 Calculated/Input Data	
Design Pressure	MAOP	10.20	MPa	Trenched	Trenched Construction/Other ?
Pipe Material		X70		H/Bd 2.46	
Yield Strength	SMYS	485	MPa	tw/D 0.014	
Outside Diameter	D	813	mm	Bd 813 mm	D + 51mm if unknown, if trenched Bd = D
Wall thickness	tw	11	mm	Bd/D 1.00	
		SMLS / ERW		Ba/D 1.00	
Pipe Type				No Development togetone Auto	
Buried Height	H	2000	mm	No Pavement, tandem Axle	Tandem Select pavement type and hence axle configuration from Table 1
DF - for allowable stress	DF	0.9	%	R 1.1	Select from Table 2
				L 1	Select from Table 2
RP 1102 Soil Data					
Soil Type				ts with low to medium plasticities	s; loose sands and gravels
Soil Reaction Mod	E'	3.4	MPa	2	
Soil Unit weight	У	18.9	kN/m3	Recommended value from RP1102	
Soil Resilient Mod	Er	34	MPa	Assumption based upon soil type	
			_		
Earth Load			_		$egin{aligned} & K_{He} = f\left\{rac{t_w}{D}, E^* ight\} \ & B_e = f\left\{rac{H}{B_d} ight\} \end{aligned}$
Circ stiffness factor	K-he	4891.04		Obtained from figure 3	
Earth Burial factor	Be	0.7310	Soil A	Obtained from figure 4	$\mathbf{p} = c \left[H \right]_{\mathbf{h}}$
Earth Excavation factor	Ee	1.0000		Obtained from figure 5	$B_e = f \left\{ \frac{B}{B_e} \right\}$
Earth Load	S-he	54940.4	kPa	3	$\begin{pmatrix} B_d \end{pmatrix}$
Earth Eodd	0.110	0.0.011	ni u		$E_{e} = f\left\{\frac{B_{d}}{D}\right\}$
Live Load					
Axle Load	Pa	0	tonnes/axle		load. If chosen value results in design wheel load <
		v		Value used to determine design wheel 80kN, 80kN is used in accordance with	
Tandem axle wheel load	Pt	0	toppoo	insert value if known	neconmendation in A32003.1 V4
	Ps	0	tonnes		
Single axle wheel load		0	tonnes	insert value if known	
Design wheel load	P		kN	Based on selection of tandem or single	
Wheel contact area	Ар	0	m2	Default figure is from RP1	102 (0.093m2), user can select otherwise
Live Load	W	750.0	kPa		
Impact Factor	Fi	1.45	DLA	Default calculated based	on Figure 7 for highways, else use DLA (refer App W of DR04561) 1.45
Highway Cyclic Stresses					
Circ Highway stiff factor	K-Hh	20.68		Obtained from figure 14	
Circ Highway Geo factor	G-Hh	0.72		Obtained from figure 15	
Cyclic Circ stress	S-Hh	17841.1	kPa		(*)
Long Highway stiff factor	K-Lh	14.9413		Obtained from figure 16	$K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$
Long Highway Geo factor	G-Lh	0.7493		Obtained from figure 17	
Cylic Long stress	S-Lh	13393.0	kPa	-	
Internal Pressure Stress					$P(D - t_w)$
Circ stress	S-Hi	371836.3636	kPa		$S_{\text{H}} = \frac{P(D - t_{\text{w}})}{2t}$
					21 _y
Check for Allowable Stress	ses				
Coeff thermal expansion	alpha	1.2E-05	per °C	Obtained from Table A1	
Young's Modulus Steel	Es	2.05E+08	kPa	Obtained from Table A1	
Installation Temperature	T1	21.0	°C		
Max Operating Temperature		60.0	°Č		
Min Operating Temperature		-10.0	°C		
ΔT component at max T2	12-11111	93,541.5		E*alpha*∆T	
ΔT component at min T2		-74,353.5	кра	E*alpha*∆T	
			ิส		
Poisson's ratio of steel	VS	0.3		(2) 2 1 2	
Possion's component		128,033.0	Гкра	v(S-he + S-hi)	
				7	$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$
Max Circumferential stress	S1	444,617.8			
Max Longitudinal stress	S2 (T2max)	47,884.5			$S_2 = \Delta S_L - E_s \alpha_t (T_2 - T_1) + v_s (S_{He} + S_{Hi})$
	S2 (T2min)	215,779.5			$S_2 = ES_L = S_s S_t (S_2 = S_H) + F_s (S_{He} + S_{Hi})$
Max Radial stress	S3	-10,200.0) kPa		$S_3 = -P$
Effective Stress	Seff (T2max)	428,736.7	' kPa		1 г
	Seff (T2min)	393,886.4	k Pa		$S_{eff} = \sqrt{\frac{1}{2} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right]}$
				_	$V_{eff} = \sqrt{2} \left[(S_1 + S_2) + (S_2 + S_3) + (S_3 + S_1) \right]$
Allowable Stress	Sa	436500) kPa	SMYS x DF	
	Effective stre	sses are within a	allowable lim	iits. ok	
Check for Fatigue					
Girth fatigue endurance limit	Sfg	82737	kPa	Obtained from Table 3	
check for S-Lh < Sfg x DF	č	74463.4	kPa	Sfg x DF	
	Girth weld st	resses are withi		0	
Long fatigue endurance limit		172369	kPa	Obtained from Table 3	
check for S-Hh < Sfl x DF		155132	kPa		
	naitudinal wa	d stresses are w		limits. ok	
L0	ngituunai wel	a 31153365 die W	nann raugue		

DN800 - Designated Crossing - 1200mm Burial Depth - No Pavement, tandem Axle

	Pipeline Conditions		
	Type / OD (mm)	DN800	813.0
	Pipe Grade / SMYS (MPa)	X70	485.0
	Wall Thickness (tw)	13.6	mm
	Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
	Design Pressure (MAOP)	10.20	MPa
##	Buried Height	1200	mm
	Design Factor	0.72	
	Installation Temperature	21	°C
	Max Operating Temperature	60	°C
	Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,000,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v _s)	1.17E-05 0.3	per °C

Pipeline Options				
Trenched Construction?	Trenched			
Soil Type / Description	Soft to medium of plasticities; loose		ts with low to medium gravels	Fo
Soil Unit weight	18.9	kN/m ³	Recommended value from RP1102: 18.9	me
Pavement & Axle Type Wheel Pressue	No Pavement, ta 750	ndem Axle kPa		

For soil types Soft to medium clays and silts with high plasticities & Soft to medium clays and silts with low to medium plasticities; loose sands and gravels the resilient modulus, Er, is assumed to be 34 MPa

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section $\,$ 5.7.3 c)

Pipeline Results						
Cyclic Circular stress	S-Hh	25,682	kPa			
Cylic Long stress	S-Lh	16,852	kPa			
Circular stress	S-Hi	299,775	kPa			
Effective Stress	Seff (T2max)	347,839	kPa			
	Seff (T2min)	314,474	kPa			
ALLOWABLE STRESS		349,200	kPa			
				% of Allowable / Limit		
Effectiv	e stresses are within a	allowable lin	nits.	99.6		
Girth w	veld stresses are within	n fatigue lim	its.	28.3		
Longitudin	Longitudinal weld stresses are within fatigue limits. 20.7					

RP1102 Road Crossing Calculation RP1102 Calculated/Input Data Input Data MAOP MPa Design Pressure 10.20 Trenched Construction/Other ? Trenched Pipe Material X70 H/Bd 1.48 Yield Strength SMYS 485 MPa tw/D 0.017 Outside Diameter D 813 mm Bd 813 mm D + 51mm if unknown, if trenched Bd = D Wall thickness Bd/D 1.00 tw 13.6 mm SMLS / ERW Pipe Type **Buried Height** н 1200 mm No Pavement, tandem Axle Tandem Select pavement type and hence axle configuration from Table 1 DF DF - for allowable stress 0.72 R 1.1 Select from Table 2 0/_ Select from Table 2 RP 1102 Soil Data Soil Type Soft to medium clays and silts with low to medium plasticities; loose sands and gravels Soil Reaction Mod E' MPa Recommended value from RP1102 Soil Unit weight 18.9 kN/m3 y Er Soil Resilient Mod MPa 34 Assumption based upon soil type $K_{He} = f \left\{ \frac{t_w}{D}, E^{\dagger} \right\}$ $B_e = f \left\{ \frac{H}{B_d} \right\}$ $E_e = f \left\{ \frac{B_d}{B_d} \right\}$ Earth Load Circ stiffness factor K-he 3819 49 Obtained from figure 3 Earth Burial factor Be 0.4577 Soil A Obtained from figure 4 Earth Excavation factor Ee Obtained from figure 5 1.0000 Earth Load S-he 26861.9 kPa Live Load Ра 0 tonnes/axle Value used to determine design wheel load. If chosen value results in design wheel load < 80kN, 80kN is used in accordance with recommendation in AS2885.1 V4 Axle Load Tandem axle wheel load 0 Pt tonnes insert value if known Single axle wheel load Ps 0 tonnes insert value if known Р Design wheel load kΝ Based on selection of tandem or single per above 0 Wheel contact area Ap m2 Default figure is from RP1102 (0.093m2), user can select otherwise 750.0 Live Load kPa w Impact Factor Fi 1.5 DLA: Default calculated based on Figure 7 for highways, else use DLA (refer App W of DR04561) **Highway Cyclic Stresses** Circ Highway stiff factor K-Hh 20.46 Obtained from figure 14 Circ Highway Geo factor G-Hh 1.01 Obtained from figure 15 Cyclic Circ stress S-Hh 25681.9 kPa $K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$ Long Highway stiff factor K-Lh 14,7770 Obtained from figure 16 Long Highway Geo factor 0.9216 G-Lh Obtained from figure 17 Cylic Long stress S-Lh 16852.3 kPa $S_{H} = \frac{P(D - t_{w})}{2t_{w}}$ Internal Pressure Stress Circ stress S-Hi 299775 kPa **Check for Allowable Stresses** Coeff thermal expansion alpha 1.2E-05 per °C Obtained from Table A1 Young's Modulus Steel 2.05E+08 . kPa Es Obtained from Table A1 Installation Temperature Τ1 21.0 °C Max Operating Temperature T2-max °С 60.0 Min Operating Temperature T2-min °С -10.0 ΔT component at max T2 93,541.5 kPa E*alpha*∆T ΔT component at min T2 -74,353.5 kPa E*alpha*∆T Poisson's ratio of steel vs 0.3 97,991.1 kPa Possion's component v(S-he + S-hi) $S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$ Max Circumferential stress S1 352.318.8 kPa S2 (T2max) 21.301.9 kPa Max Longitudinal stress $S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ S2 (T2min) 189,196.9 kPa Max Radial stress -10,200.0 kPa $S_{3} = -P$ S3 Effective Stress Seff (T2max) 347.839.4 kPa $S_{eff} = \sqrt{\frac{1}{2} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right]}$ Seff (T2min) 314,474.0 kPa Allowable Stress Sa 349200 kPa SMYS x DF Effective stresses are within allowable limits. Г ok

Check for Fatigue

oncontrol l'auguo					
Girth fatigue endurance limit	Sfg	82737	kPa	Obtained fro	m Table 3
check for S-Lh < Sfg x DF		59570.7	kPa	Sfg x DF	
	Girth weld	stresses are within	in fatigu	e limits.	ok
Long fatigue endurance limit	Sfl	172369	kPa	Obtained fro	m Table 3
check for S-Hh < Sfl x DF		124105.6	kPa		
Loi	ngitudinal w	eld stresses are v	vithin fa	tigue limits.	ok

1.5

DN800 - Designated Crossing - 1200mm Burial Depth - No Pavement, tandem Axle

DN800 - Designated Crossing - 1500mm Burial Depth - No Pavement, tandem Axle

	Pipeline Conditions		
	Type / OD (mm)	DN800	813.0
	Pipe Grade / SMYS (MPa)	X70	485.0
	Wall Thickness (tw)	13.8	mm
	Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
	Design Pressure (MAOP)	10.20	MPa
##	Buried Height	1500	mm
	Design Factor	0.72	
	Installation Temperature	21	°C
	Max Operating Temperature	60	°C
	Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,000,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v _s)	1.17E-05 0.3	per °C

Pipeline Options				
Trenched Construction?	Trenched			
Soil Type / Description	Soft to mediun plasticities; loc		ilts with low to medium d gravels	Fo
Soil Unit weight	18.9	kN/m ³	Recommended value from RP1102: 18.9	res
Pavement & Axle Type Wheel Pressue	No Pavement, 750	tandem Axle kPa	•	

For soil types Soft to medium clays and silts with high plasticities & Soft to medium clays and silts with low to

medium	plasticitie	s; loo	se sand	s and	gravels	s the
resilient	modulus,	Er, is	assume	ed to l	be 34 M	Pa

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section $\,$ 5.7.3 c)

Pipeline Results					
Cyclic Circular stress	S-Hh	22,513	kPa		
Cylic Long stress	S-Lh	15,610	kPa		
Circular stress	S-Hi	295,357	kPa		
Effective Stress	Seff (T2max)	346,286	kPa		
	Seff (T2min)	312,806	kPa		
ALLOWABLE STRESS		349,200	kPa		
				% of Allowable / Limit	
Effectiv	e stresses are within a	allowable lin	nits.	99.2	
Girth v	26.2				
Longitudir	al weld stresses are w	ithin fatigue	limits.	18.1	

RP1102 Road Crossing Calculation

RP1102 Calculated/Input Data Input Data MAOP MPa Design Pressure 10.20 Trenched Construction/Other ? Trenched Pipe Material X70 H/Bd 1.85 Yield Strength SMYS 485 MPa tw/D 0.017 Outside Diameter D 813 mm Bd 813 mm D + 51mm if unknown, if trenched Bd = D Wall thickness Bd/D 1.00 tw 13.8 mm SMLS / ERW Pipe Type **Buried Height** н 1500 mm No Pavement, tandem Axle Tandem Select pavement type and hence axle configuration from Table 1 DF DF - for allowable stress 0.72 R 1.1 Select from Table 2 0/_ Select from Table 2 RP 1102 Soil Data Soil Type Soft to medium clays and silts with low to medium plasticities; loose sands and gravels Soil Reaction Mod E' MPa Recommended value from RP1102 Soil Unit weight 18.9 kN/m3 y Er Soil Resilient Mod MPa 34 Assumption based upon soil type $K_{He} = f \left\{ \frac{t_w}{D}, E^{\dagger} \right\}$ $B_e = f \left\{ \frac{H}{B_d} \right\}$ $E_e = f \left\{ \frac{B_d}{B_d} \right\}$ Earth Load Circ stiffness factor K-he 3819 49 Obtained from figure 3 Earth Burial factor Be 0.5540 Soil A Obtained from figure 4 Earth Excavation factor Ee Obtained from figure 5 1.0000 Earth Load S-he 32514.0 kPa Live Load Ра 0 tonnes/axle Value used to determine design wheel load. If chosen value results in design wheel load < 80kN, 80kN is used in accordance with recommendation in AS2885.1 V4 Axle Load Tandem axle wheel load 0 Pt tonnes insert value if known Single axle wheel load Ps 0 tonnes insert value if known Р Design wheel load kΝ Based on selection of tandem or single per above 0 Wheel contact area Ap m2 Default figure is from RP1102 (0.093m2), user can select otherwise 750.0 Live Load kPa w Impact Factor Fi 1.5 DLA: Default calculated based on Figure 7 for highways, else use DLA (refer App W of DR04561) **Highway Cyclic Stresses** Circ Highway stiff factor K-Hh 20.46 Obtained from figure 14 Circ Highway Geo factor G-Hh 0.89 Obtained from figure 15 Cyclic Circ stress S-Hh 22513.0 kPa $K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$ Long Highway stiff factor K-Lh 14,7770 Obtained from figure 16 Long Highway Geo factor 0.8537 G-Lh Obtained from figure 17 Cylic Long stress S-Lh 15610.4 kPa $S_{H} = \frac{P(D - t_{w})}{2t_{w}}$ Internal Pressure Stress Circ stress S-Hi 295356.5217 kPa **Check for Allowable Stresses** Coeff thermal expansion alpha 1.2E-05 per °C Obtained from Table A1 Young's Modulus Steel 2.05E+08 . kPa Es Obtained from Table A1 Installation Temperature Τ1 21.0 °C Max Operating Temperature T2-max °С 60.0 Min Operating Temperature T2-min °С -10.0 ΔT component at max T2 93,541.5 kPa E*alpha*∆T ΔT component at min T2 -74,353.5 kPa E*alpha*∆T Poisson's ratio of steel vs 0.3 98,361.2 kPa Possion's component v(S-he + S-hi) $S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$ Max Circumferential stress S1 350.383.6 kPa S2 (T2max) 20.430.1 kPa Max Longitudinal stress $S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ S2 (T2min) 188,325.1 kPa Max Radial stress -10,200.0 kPa $S_{3} = -P$ S3 Effective Stress Seff (T2max) 346.286.0 kPa $S_{eff} = \sqrt{\frac{1}{2} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right]}$ 312,806.4 kPa Seff (T2min) Allowable Stress 349200 kPa SMYS x DF Sa Effective stresses are within allowable limits. Г ok

DN800 - Designated Crossing - 1500mm Burial Depth - No Pavement, tandem Axle

Check for Fatigue

Girth fatigue endurance limit	Sfg	82737	kPa	Obtained fro	m Table 3	
check for S-Lh < Sfg x DF		59570.7	kPa	Sfg x DF		
	Girth weld stress	es are within	n fatigue lim	its.	ok	
Long fatigue endurance limit	Sfl	172369	kPa	Obtained fro	m Table 3	
check for S-Hh < Sfl x DF		124105.6	kPa			
Lor						

1.5

Guidlines for the Design of Buried Steel Pipe, Pipeline Road Crossing Calculation

DN800 - Occasional Crossing - 750mm Burial Depth - No Pavement, single axle

Pipeline Conditions		
Type / OD (mm)	DN800	813.0
Pipe Grade / SMYS (MPa)	X70	485.0
Wall Thickness (tw)	12.8	mm
Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
Design Pressure (MAOP)	10.20	MPa
Buried Height	750	mm
Design Factor	0.9	
Installation Temperature	21	°C
Max Operating Temperature	60	°C
Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,000,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v _s)	1.17E-05 0.3	per °C

Pipeline Options				
Axle Type		Sin	gle	
Axle Spacing	0	mm		The spacing between axles in the axle set for tandem and triple axles.
Soil Type / Description	Soft to medium plasticities; loc			For soil types Soft to medium clays and silts with high plasticities & Soft to medium clays and silts with low to
Soil Unit weight	18.9	kN/m ³		medium plasticities; loose sands and gravels the resilient modulus, Er, is assumed to be 34 MPa
Design wheel load (Ps)	80	kN	Recommended value from AS2885: 80	
Height of water table above pipe (hw)	0	m	0<=hw<=depth of cover	

Pipeline Results					
Circumferential stress	S-c	241,209	kPa		
Longitudinal stress	S-I (T2 max)	-3,637	kPa		
Longitudinal stress	S-I (T2 min)	-171,532	kPa		
Radial stress	S-r	-10,200	kPa		
Effective Stress	Seff (T2max)	248,193	kPa		
	Seff (T2min)	360,271	kPa		
ALLOWABLE STRESS		436,500	kPa		
				% of Allowable / Limit	
Effective pi	82.5				
	Ring Buckling Stress Check				

ok

Guidelines for the Design of Buried Steel Pipe Calculation

Input Data				Calculated/Input Data
Design Pressure	MAOP	10200.00 k	Pa	
Pipe Material	WAOF	X70	гa	tw/D 0.016
Yield Strength	SMYS		ЛРа	D/C 1.084
Outside Diameter	D			
			n	
Outside Radius	R	0.4065		Assume (El)eq = El as this is more conservative and the
Wall thickness	tw		nm	(El)eq 35.83 kN.m $(EI)_{eq} = EI + E_L I_L + E_C I_C$ coating and lining stiffenesses are assumed to be small
Ріре Туре	-	SMLS / ERW		Rw 1 - compared to the pipe
Buried Height	С		n	
DF - for allowable stress	DF	0.9		
Design wheel load	Ps		:N	80kN is used in accordance with recommendation in AS2885.1 V4
Deflection lag factor	DI	1.5 -		
Bedding constant	К	0.1 -		
Coeff thermal expansion	alpha		er °C	
Young's Modulus Steel	Es		Pa	
Installation Temperature	T1		С	
Max Operating Temperature	T2-max		С	
Min Operating Temperature	T2-min	-10.0 °	С	
Poisson's ratio of steel	v	0.3 -		
RP 1102 Soil Data				
Soil Type		Soft to medium cla	avs and silt	s with low to medium plasticities; loose sands and gravels
Soil Reaction Mod	Ε'		iPa	
Soil Unit weight	L y		:N/m3	Recommended value from RP1102
Soil Resilient Mod	Er		ЛРа	Assumption based upon soil type
Son Resilient Mod	L1	<u> </u>	11 0	Assumption based upon soil type
Earth Load				
Earth Load	Pv	14.18 k	Pa	$P_{\rm v} = \gamma C$
Earth Load	i v	14.10	aa	$P_{\nu} = \gamma C$
Applied Surface Load				3.0
Impact Factor	F'	1.15		$P_{p} = \frac{3r_{s}}{[1 + c_{s}^{2}]^{2.5}}$ Impact Factor obtained from Appendix B3
Offset Tandem surface load	Po2	0		impact ractor obtained non Appendix BS
	P02 P03	0		$P_{P} = \frac{3P_{S}}{2\pi C^{2} \left[1 + \left(\frac{d}{C}\right)^{2}\right]^{2.5}}$ Impact Factor obtained from Appendix B3
Offset Triple surface load			De	
Total surface Load	Рр	78.09202541 k	Ра	NOTE: Variable d in the applied surface load equation is assumed to be 0 for a single
Ovality				axle as this gives a more conservative calculation.
	Pc	92.27 k	Pa	
Combined pressure on pipe				$\Delta y = D_{k}KP$
Ovality	dy/D	0.018683573 -		$\frac{\Delta y}{D} = \frac{D_{k}KP}{\left(\frac{EU_{ref}}{R} + 0.061E^{\circ}\right)}$
				$\left(\frac{1}{R^{1}}+0.0012\right)$
Through Wall Bonding Stroop				
Through-Wall Bending Stress	0	044000	D-	$-(\Delta v)(t)$
Circumferential Stress	S-c	241209 k	Pa	$\sigma_{bw} = 4E \left(\frac{\Delta y}{D}\right) \left(\frac{t}{D}\right)$
Ring Buckling Check	50	•		
Factor of safety	FS	3 -		$B' = \frac{1}{C}$
Empirical coefficient of elastic				$B' = \frac{1}{1 + 4e^{(\frac{\cos C}{D})}}$
support	В'	0.21 -		
Buckling vertical pressure load			_	$\frac{1}{32R} \frac{32R}{R'F'} \frac{R'F'(ET)_{eq}}{ET}$
limit		411.18 k	Pa	The vertical pressure load is below the buckling limit $\frac{1}{FS}\sqrt{32R_WB'E'\frac{(EI)_{eq}}{D^3}}$
Langitudinal Crass				
Longitudinal Stress	0.1		D -	
Hoop Stress	S-h		Pa	$S_{\rm H} = PD / (2t)$
Longitudinal Stress (T2 max)	S-I (T2max)		Pa	
Longitudinal Stress (T2 min)	S-I (T2min)	-171532.4 k	Pa	$\sigma_c = E\alpha(T_2 - T_1) - v\sigma_h$
Radial Stress	-		_	
Circ stress	S-r	-10200.00 k	Pa	$S_3 = -P$
Check for Allowable Stresses				
	0.1	our	D :	
Max Circumferential stress	S-c	241,208.8 k		
Max Longitudinal stress	S-I (T2max)	-3,637.4 k		$ \begin{bmatrix} S_2 (\text{T2 max}) \\ S_2 (\text{T2 min}) \end{bmatrix} S_{eff} = \sqrt{\frac{1}{2}} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right] $
	S-I (T2min)	-171,532.4 k		S2 (T2 min) $\begin{bmatrix} B_{eff} & -\sqrt{2} \left[(B_1 & B_2) + (B_2 & B_3) + (B_3 & B_1) \right] \end{bmatrix}$
Max Radial stress	S-r	-10,200.0 k	Pa	S3 12
			_	
Effective Stress	Seff (T2max)	248,192.6 k		
	Seff (T2min)	360,270.7 k	Pa	1
Allowable Street	80	400500 -	Do	0.0/2 - 05
Allowable Stress	Sa Effective stre	436500 k		SMYS x DF
	Effective stre	sses are within all	owable lim	its. ok

Appendix 2 - Calculation Summary DN1050

DN1050 - Occasional crossing - 900mm Burial Depth - No Pavement, tandem axle

Pipeline Conditions		
Type / OD (mm)	DN1050	1067.0
Pipe Grade / SMYS (MPa)	X70	485.0
Wall Thickness (tw)	13.4	mm
Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
Design Pressure (MAOP)	10.20	MPa
Buried Height	900	mm
Design Factor	0.9	
Installation Temperature	21	°C
Max Operating Temperature	60	°C
Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,000,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v _s)	1.17E-05 0.3	per °C

Pipeline Options				
Trenched Construction?	Trenched			1
Soil Type / Description	Soft to medium plasticities; loo		ts with low to medium gravels	Fo
Soil Unit weight	18.9	kN/m ³	Recommended value from RP1102: 18.9	m
Pavement & Axle Type Wheel Pressue	No Pavement, 750	Tandem Axle kPa		

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section 5.7.3 c)

For soil types Soft to medium clays and silts with high
plasticities & Soft to medium clays and silts with low to
medium plasticities; loose sands and gravels the
resilient modulus, Er, is assumed to be 34 MPa

Pipeline Results				
Cyclic Circular stress	S-Hh	23,844	kPa	
Cylic Long stress	S-Lh	14,613	kPa	
Circular stress	S-Hi	400,997	kPa	
Effective Stress	Seff (T2max)	433,396	kPa	
	Seff (T2min)	398,282	kPa	
ALLOWABLE STRESS		436,500	kPa	
				% of Allowable / Limit
Effective stresses are within allowable limits.				99.3
Girth w	eld stresses are within	n fatigue lim	its.	19.6
Longitudin	al weld stresses are w	ithin fatigue	limits.	15.4

RP1102 Road Crossing Calculation

DN1050 - Occasional crossing - 900mm Burial Depth - No Pavement, tandem axle

Input Data Design Pressure Pipe Material Yield Strength Outside Diameter Wall thickness Pipe Type Buried Height DF - for allowable stress RP 1102 Soil Data Soil Type Soil Reaction Mod Soil Unit weight Soil Resilient Mod	MAOP SMYS D tw H DF E' y Er	10.20 MPa X70 485 MPa 1067 mm 13.4 13.4 mm SMLS / ERW 900 mm 0.9 0.9 %	RP1102 Calculated/Input Da Trenched H/Bd 0.84 tw/D 0.013 Bd 1067 Mo Pavement, Tandem Axle R 1.1 L 1 silts with low to medium plasticitie 2 Recommended value from RP1102 Assumption based upon soil type	Trenched Construction/Other ? D + 51mm if unknown, if trenched Bd = D Tandem Select pavement type and hence axle configuration from Table 1 Select from Table 2 Select from Table 2
Earth Load Circ stiffness factor Earth Burial factor Earth Excavation factor Earth Load	K-he Be Ee S-he	5267.92 0.2338 Soil A 1.0000 24841.6 kPa	Obtained from figure 3	$K_{He} = f\left\{\frac{I_w}{D}, E'\right\}$ $B_e = f\left\{\frac{H}{B_d}\right\}$ $E_e = f\left\{\frac{B_e}{D_e}\right\}$
Live Load Axle Load Tandem axle wheel load Single axle wheel load Design wheel load Wheel contact area Live Load Impact Factor	Pa Pt Ps P Ap w Fi	0 tonnes/az 0 tonnes 0 tonnes 750 kN 0 m2 750.0 kPa 1.5 D	80kN, 80kN is used in accordance with insert value if known insert value if known Based on selection of tandem or sing Default figure is from RF	
Highway Cyclic Stresses Circ Highway stiff factor Circ Highway Geo factor Cyclic Circ stress Long Highway stiff factor Long Highway Geo factor Cylic Long stress Internal Pressure Stress Circ stress	K-Hh G-Hh S-Hh K-Lh G-Lh S-Lh S-Hi	20.63 0.93 23844.5 kPa 14.8699 0.7941 14613.0 kPa 400997.0149 kPa	Obtained from figure 14 Obtained from figure 15 Obtained from figure 16 Obtained from figure 17	$K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$ $S_{H} = \frac{P\left(D - t_w\right)}{2t_w}$
Check for Allowable Stress Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2	alpha Es T1 T2-max	1.2E-05 per °C 2.05E+08 kPa 21.0 °C 60.0 °C -10.0 °C 93,541.5 kPa -74,353.5 kPa	Obtained from Table A1 Obtained from Table A1 E*alpha*ΔT E*alpha*ΔT	
Poisson's ratio of steel Possion's component	VS	0.3 127,751.6 kPa	v(S-he + S-hi)	
Max Circumferential stress Max Longitudinal stress Max Radial stress	S1 S2 (T2max) S2 (T2min) S3	449,683.1 kPa 48,823.1 kPa 216,718.1 kPa -10,200.0 kPa		$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$ $S_2 = \Delta S_L - E_s \alpha_t (T_2 - T_1) + v_s (S_{He} + S_{Hi})$ $S_3 = -P$
Effective Stress Allowable Stress	Seff (T2max) Seff (T2min) Sa Effective stres	433,396.4 kPa 398,281.9 kPa 436500 kPa sses are within allowable	SMYS x DF	$S_{eff} = \sqrt{\frac{1}{2} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right]}$
Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF Long fatigue endurance limit check for S-Hh < Sfl x DF Lo	Girth weld str	82737 kPa 74463.4 kPa esses are within fatigue I 172369 kPa 155132 kPa d stresses are within fatig	Obtained from Table 3	

DN1050 - Occasional crossing - 2000mm Burial Depth - No Pavement, tandem axle

Pipeline Conditions		
Type / OD (mm)	DN1050	1067.0
Pipe Grade / SMYS (MPa)	X70	485.0
Wall Thickness (tw)	14.3	mm
Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
Design Pressure (MAOP)	10.20	MPa
Buried Height	2000	mm
Design Factor	0.9	
Installation Temperature	21	°C
Max Operating Temperature	60	°C
Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,000,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v _s)	1.17E-05 0.3	per °C

Pipeline Options				
Trenched Construction?	Trenched			
Soil Type / Description	Soft to medium plasticities; loo	· · · · · · · · · · · · · · · · · · ·	ts with low to medium gravels	Fo
Soil Unit weight	18.9	kN/m ³	Recommended value from RP1102: 18.9	res
Pavement & Axle Type Wheel Pressue	No Pavement, 750	Tandem Axle kPa		

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section 5.7.3 c)

For soil types Soft to medium clays and silts with high
plasticities & Soft to medium clays and silts with low to
medium plasticities; loose sands and gravels the
resilient modulus, Er, is assumed to be 34 MPa

Pipeline Results						
Cyclic Circular stress	S-Hh	16,121	kPa			
Cylic Long stress	S-Lh	10,949	kPa			
Circular stress	S-Hi	375,438	kPa			
Effective Stress	Seff (T2max)	435,805	kPa			
	Seff (T2min)	400,157	kPa			
ALLOWABLE STRESS		436,500	kPa			
				% of Allowable / Limit		
Effectiv	99.8					
Girth w	Girth weld stresses are within fatigue limits.					
Longitudin	al weld stresses are w	ithin fatigue	limits.	10.4		

RP1102 Road Crossing Calculation

n DN1050 - Occasional crossing - 2000mm Burial Depth - No Pavement, tandem axle

				•	
Input Data				RP1102 Calculated/Input Data	
-	MAOD	10.20			
Design Pressure	MAOP	10.20	MPa	Trenched	Trenched Construction/Other ?
Pipe Material		X70		H/Bd 1.87	
Yield Strength	SMYS	485	MPa	tw/D 0.013	
Outside Diameter	D	1067	mm	Bd 1067 mm	D + 51mm if unknown, if trenched Bd = D
Wall thickness	tw	14.3	mm	Bd/D 1.00	
Pipe Type		SMLS / ERW			
Buried Height	н	2000	mm	No Pavement, Tandem Axle	Tandem Select pavement type and hence axle configuration from Table 1
DF - for allowable stress	DF	0.9	%	R <u>1.1</u>	Select from Table 2
				L 1	Select from Table 2
RP 1102 Soil Data					
Soil Type		Soft to medium	clays and sil	ts with low to medium plasticities	s; loose sands and gravels
Soil Reaction Mod	E'	3.4	MPa	2	
Soil Unit weight	Y	18.9	kN/m3	Recommended value from RP1102	
Soil Resilient Mod	Er	34	MPa	Assumption based upon soil type	
		0.		Account from bacoa apon con type	
Earth Load					(t_{u}, t_{v})
		5007.00	٦		$\begin{split} K_{He} &= f\left\{\frac{t_w}{D}, E^*\right\}\\ B_e &= f\left\{\frac{H}{B_d}\right\} \end{split}$
Circ stiffness factor	K-he	5267.92		Obtained from figure 3	$\begin{pmatrix} D \\ \mathbf{u} \end{pmatrix}$
Earth Burial factor	Be	0.5673	Soil A	Obtained from figure 4	$B = f \left(\frac{H}{H} \right)$
Earth Excavation factor	Ee	1.0000		Obtained from figure 5	$B_e = J$ B_e
Earth Load	S-he	60268.5	kPa		
					$E_{e} = f\left\{\frac{B_{d}}{D}\right\}$
Live Load					
Axle Load	Pa	0	tonnes/avia	Mar	
JUNE LUQU	ia	U	connes/axie	value used to determine design wheel	load. If chosen value results in design wheel load <
		-		80kN, 80kN is used in accordance with	recommendation in AS2885.1 V4
Tandem axle wheel load	Pt	0	tonnes	insert value if known	
Single axle wheel load	Ps	0	tonnes	insert value if known	
Design wheel load	Р	750	kN	Based on selection of tandem or single	e per above
Wheel contact area	Ар	0	m2		102 (0.093m2), user can select otherwise
Live Load	w	750.0	kPa	Dolaalt ingero io nom rer r	
Impact Factor	Fi	1.45	DLA	Default calculated based of	on Figure 7 for highways, else use DLA (refer App W of DR04561) 1.45
Highway Cyclic Stresses					
Circ Highway stiff factor	K-Hh	20.63		Obtained from figure 14	
Circ Highway Geo factor	G-Hh	0.65		Obtained from figure 15	
Cyclic Circ stress	S-Hh	16121.0	kPa	-	
Long Highway stiff factor	K-Lh	14.8699		Obtained from figure 16	$K_{_{Hh}}=figgl\{rac{t_w}{D},E_riggr\}$
					$K_{Hh} = \int D^{T} D^{T} D^{T}$
Long Highway Geo factor	G-Lh	0.6155		Obtained from figure 17	
Cylic Long stress	S-Lh	10948.5	kPa		$\mathcal{D}(\mathbf{D} + \mathbf{t})$
Internal Pressure Stress					$S_{\#} = \frac{P(D - t_{\psi})}{2t}$
Circ stress	S-Hi	375438.4615	kPa		2 t
Check for Allowable Stress	ses		_		
Coeff thermal expansion	alpha	1.2E-05	per °C	Obtained from Table A1	
Young's Modulus Steel	Es	2.05E+08	kPa	Obtained from Table A1	
Installation Temperature	T1	21.0	°C		
Max Operating Temperature		60.0	°Č		
			°C		
Min Operating Temperature	12-11111	-10.0			
ΔT component at max T2		93,541.5		E*alpha*∆T	
ΔT component at min T2		-74,353.5	5 kPa	E*alpha*∆T	
			-		
Poisson's ratio of steel	VS	0.3	3		
Possion's component		130,712.1	l kPa	v(S-he + S-hi)	
Max Circumferential stress	S1	451,828.0) kPa	Т	$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$
Max Longitudinal stress	S2 (T2max)	48,119.1			
Max Longitudinal stress	0.0 (77.0 1.)				$S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})$
	S2 (12min)	216,014.1			
Max Radial stress	S3	-10,200.0	ј кра		$S_3 = -P$
Effective Stress	Seff (T2max)	435,804.9			
	Seff (T2min)	400,156.8	3 kPa		$S_{eff} = \sqrt{\frac{1}{2} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right]}$
					$V_{eff} = \sqrt{2} \left[(z_1 - z_2) + (z_2 - z_3) + (z_3 - z_1) \right]$
Allowable Stress	Sa	436500) kPa	SMYS x DF	1-
	Effective stres	sses are within	allowable lin	nits. ok	
Check for Fatigue					
	Sta	00707	kDo	Obtained from Table 2	
Girth fatigue endurance limit	Sig	82737	kPa	Obtained from Table 3	
check for S-Lh < Sfg x DF		74463.4	kPa	Sfg x DF	
	Girth weld str	resses are withi	n fatigue lim	its. ok	
Long fatigue endurance limit	Sfl	172369	kPa	Obtained from Table 3	
check for S-Hh < Sfl x DF		155132	kPa		
	ngitudinal web	d stresses are v		limits. ok	
LU					

DN1050 - Designated crossing - 1200mm Burial Depth - No Pavement, tandem axle

Pipeline Conditions		
Type / OD (mm)	DN1050	1067.0
Pipe Grade / SMYS (MPa)	X70	485.0
Wall Thickness (tw)	17.8	mm
Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
Design Pressure (MAOP)	10.20	MPa
Buried Height	1200	mm
Design Factor	0.72	
Installation Temperature	21	°C
Max Operating Temperature	60	°C
Min Operating Temperature	-10	°C

 $\begin{tabular}{|c|c|c|c|} \hline Steel Properties \\ \hline Young's Modulus (E_s) & 205,000,000 & kPa \\ \hline Coefficient of Thermal Exp. (\alpha) & 1.17E-05 & per °C \\ \hline Poisson's Ratio (v_s) & 0.3 \\ \hline \end{tabular}$

Pipeline Options				
Trenched Construction?	Trenched			
Soil Type / Description	Soft to medium plasticities; loo		Its with low to medium	F
Soil Unit weight	18.9	kN/m ³	Recommended value from RP1102: 18.9	m
Pavement & Axle Type Wheel Pressue	No Pavement, 750	Tandem Axle kPa	•	

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section 5.7.3 c)

For soil types Soft to medium clays and silts with high
plasticities & Soft to medium clays and silts with low to
medium plasticities; loose sands and gravels the
resilient modulus, Er, is assumed to be 34 MPa

Pipeline Results				
Cyclic Circular stress	S-Hh	23,642	kPa	
Cylic Long stress	S-Lh	14,522	kPa	
Circular stress	S-Hi	300,613	kPa	
Effective Stress	Seff (T2max)	346,493	kPa	
	Seff (T2min)	312,320	kPa	
ALLOWABLE STRESS		349,200	kPa	
				% of Allowable / Limit
Effectiv	e stresses are within a	allowable lim	nits.	99.2
Girth v	veld stresses are within	n fatigue lim	its.	24.4
Longitudir	al weld stresses are w	ithin fatigue	limits.	19.0

RP1102 Road Crossing Calculation DN1050 - Desig

		2000	J	sing - 1200mm Bunai Deptii - N	to ravement, tandem axie
Input Data				RP1102 Calculated/Input Data	3
Design Pressure	MAOP	10.20	MPa	Trenched	Trenched Construction/Other ?
Pipe Material		X70		H/Bd 1.12	
Yield Strength	SMYS	485	MPa	tw/D 0.017	
Outside Diameter	D	1067	mm	Bd 1067 mm	D + 51mm if unknown, if trenched Bd = D
Wall thickness	tw	17.8	mm	Bd/D 1.00	
	LVV			Bu/D 1:00	
Pipe Type		SMLS / ERW	-		
Buried Height	н	1200	mm	No Pavement, Tandem Axle	Tandem Select pavement type and hence axle configuration from Table 1
DF - for allowable stress	DF	0.72	%	R <u>1.1</u>	Select from Table 2
				L 1	Select from Table 2
RP 1102 Soil Data					
Soil Type		Soft to medium	clays and sil	ts with low to medium plasticities	; loose sands and gravels
Soil Reaction Mod	E'	3.4	MPa	2	
Soil Unit weight	у	18.9	kN/m3	Recommended value from RP1102	
Soil Resilient Mod	Er	34	MPa	Assumption based upon soil type	
Earth Load					$egin{aligned} & K_{He} = f\left\{rac{t_w}{D}, E^{i} ight\} \ & B_e = f\left\{rac{H}{B_d} ight\} \end{aligned}$
Circ stiffness factor	K-he	3819.49	٦	Obtained from figure 3	$\mathbf{K}_{He} = f \left\{ \frac{D}{D}, E \right\}$
Earth Burial factor	Be	0.3330	Soil A	Obtained from figure 4	
			3011 A		$B_e = f\left\{\frac{\pi}{2}\right\}$
Earth Excavation factor	Ee	1.0000		Obtained from figure 5	
Earth Load	S-he	25652.6	kPa		$E_e = f\left\{\frac{B_d}{D}\right\}$
Live Load					
Axle Load	Pa	0	tonnes/axle	Value used to determine design wheel	load. If chosen value results in design wheel load <
				80kN, 80kN is used in accordance with	recommendation in AS2885.1 V4
Tandem axle wheel load	Pt	0	tonnes	insert value if known	
Single axle wheel load	Ps	0	tonnes	insert value if known	
Design wheel load	Р	750	kN	Based on selection of tandem or single	e per above
Wheel contact area	Ap	0	m2		102 (0.093m2), user can select otherwise
Live Load	w	750.0	kPa	Dolaat ligato lo holin ta t	
Impact Factor	Fi	1.5	DLA	Default aslaulated based o	on Figure 7 for highways, else use DLA (refer App W of DR04561) 1.5
Impact Factor	ГІ	1.5	DLA	Default calculated based of	on Figure 7 for highways, else use DLA (refer App W of DR04561) 1.5
Highway Cyclic Stresses					
• • •	12.1.0	00.40			
Circ Highway stiff factor	K-Hh	20.46		Obtained from figure 14	
Circ Highway Geo factor	G-Hh	0.93		Obtained from figure 15	
Cyclic Circ stress	S-Hh	23642.1	kPa		$\begin{pmatrix} t \end{pmatrix}$
Long Highway stiff factor	K-Lh	14.7770		Obtained from figure 16	$K_{Hh} = f\left\{rac{t_w}{D}, E_r ight\}$
Long Highway Geo factor	G-Lh	0.7941		Obtained from figure 17	
Cylic Long stress	S-Lh	14521.7	kPa		
Internal Pressure Stress					$P(D - t_w)$
Circ stress	S-Hi	300613.4831	kPa		$S_{\text{H}} = \frac{P(D - t_{\text{w}})}{2t}$
					21 ₉
Check for Allowable Stress					
	ses				
		1.2E-05	per °C	Obtained from Table A1	
Coeff thermal expansion	alpha	1.2E-05 2.05E+08	per °C kPa	Obtained from Table A1	
Coeff thermal expansion Young's Modulus Steel	alpha Es	2.05E+08	kPa	Obtained from Table A1 Obtained from Table A1	
Coeff thermal expansion Young's Modulus Steel Installation Temperature	alpha Es T1	2.05E+08 21.0	kPa ℃		
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature	alpha Es T1 T2-max	2.05E+08 21.0 60.0	kPa ℃ ℃		
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature	alpha Es T1 T2-max	2.05E+08 21.0 60.0 -10.0	kPa ℃ ℃ ℃	Obtained from Table A1	
$\begin{array}{l} \mbox{Coeff thermal expansion} \\ \mbox{Young's Modulus Steel} \\ \mbox{Installation Temperature} \\ \mbox{Max Operating Temperature} \\ \mbox{Min Operating Temperature} \\ \mbox{\Delta T component at max T2} \end{array}$	alpha Es T1 T2-max	2.05E+08 21.0 60.0 -10.0 93,541.5	kPa ℃ ℃ ℃ skPa	Obtained from Table A1 E*alpha*∆T	
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature	alpha Es T1 T2-max	2.05E+08 21.0 60.0 -10.0	kPa ℃ ℃ ℃ skPa	Obtained from Table A1	
$\begin{array}{l} \mbox{Coeff thermal expansion}\\ \mbox{Young's Modulus Steel}\\ \mbox{Installation Temperature}\\ \mbox{Max Operating Temperature}\\ \mbox{Min Operating Temperature}\\ \mbox{\Delta T component at max T2}\\ \mbox{\Delta T component at min T2}\\ \end{array}$	alpha Es T1 T2-max T2-min	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5	kPa ℃ ℃ ℃ 5 kPa 5 kPa	Obtained from Table A1 E*alpha*∆T	
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel	alpha Es T1 T2-max	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5	kPa ℃ ℃ ℃ 5 kPa 5 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	
$\begin{array}{l} \mbox{Coeff thermal expansion}\\ \mbox{Young's Modulus Steel}\\ \mbox{Installation Temperature}\\ \mbox{Max Operating Temperature}\\ \mbox{Min Operating Temperature}\\ \mbox{\Delta T component at max T2}\\ \mbox{\Delta T component at min T2}\\ \end{array}$	alpha Es T1 T2-max T2-min	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5	kPa ℃ ℃ ℃ 5 kPa 5 kPa	Obtained from Table A1 E*alpha*∆T	
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel	alpha Es T1 T2-max T2-min	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5	kPa ℃ ℃ ℃ 5 kPa 5 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel	alpha Es T1 T2-max T2-min	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5	kPa °C °C i kPa i kPa 3 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	$S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component	alpha Es T1 T2-max T2-min vs	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 0.3 97,879.8	kPa °C °C S kPa S kPa B kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0	kPa °C °C 5 kPa 5 kPa 3 kPa 4 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	$\boxed{S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}}$ $\boxed{S_2 = \Delta S_L - E_i \alpha_i (T_2 - T_1) + v_i (S_{He} + S_{Hi})}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2min)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 0.3 97,879.6 349,908.1 18,860.0 186,755.0	kPa °C °C 5 kPa 5 kPa 3 kPa 4 kPa 9 kPa 9 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	$\overline{S_2 = \Delta S_L - E_s \alpha_t (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0	kPa °C °C 5 kPa 5 kPa 3 kPa 4 kPa 9 kPa 9 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2min) S3	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0	kPa °C °C 5 kPa 5 kPa 8 kPa 1 kPa 1 kPa 0 kPa 0 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3	kPa °C °C 5 kPa 5 kPa 3 kPa 9 kPa 9 kPa 9 kPa 9 kPa 9 kPa 9 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2min) S3	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0	kPa °C °C 5 kPa 5 kPa 3 kPa 9 kPa 9 kPa 9 kPa 9 kPa 9 kPa 9 kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress	alpha Es T1 T2-max T2-min vs S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4	kPa °C °C °C °C °C °C °C °C °C °C	Obtained from Table A1 E*alpha*ΔT E*alpha*ΔT v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + v_s (S_{He} + S_{Hi})}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2min)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200	kPa °C °C °C S kPa S kPa S kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2min)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4	kPa °C °C °C S kPa S kPa S kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2min)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200	kPa °C °C °C S kPa S kPa S kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2min)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200	kPa °C °C °C S kPa S kPa S kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2min)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200	kPa °C °C °C S kPa S kPa S kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2min)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200	kPa °C °C °C S kPa S kPa S kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2max) Seff (T2max)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200	kPa °C °C °C S kPa S kPa S kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa V kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi)	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2max) S3 Seff (T2max) Seff (T2max) Seff (T2max) Seff (T2max)	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 0.3 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200 sses are within a	kPa *C *C *C *C *C *C *C *C *C *C	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi) SMYS x DF its. ok	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2max) Seff (T2min) Sa Effective stress Sfg	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 0.3 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200 sses are within a 82737 59570.7	kPa °C °C °C °C °C °C °C °C °C °C	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi) SMYS x DF iits. OK Obtained from Table 3 Sfg x DF	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature Min Operating Temperature ΔT component at max T2 ΔT component at min T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF	alpha Es T1 T2-max T2-min vs \$2 (T2max) \$2 (T2max) \$2 (T2min) \$3 Seff (T2min) Sa Effective stress Sfg Girth weld str	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 0.3 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200 sses are within a 82737 59570.7 resses are within	kPa °C skPa kPa kPa <	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi) SMYS x DF its. ok	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF	alpha Es T1 T2-max T2-min vs \$2 (T2max) \$2 (T2max) \$2 (T2min) \$3 Seff (T2min) Sa Effective stress Sfg Girth weld str	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 188,675.0 -10,200.0 346,493.3 312,320.4 349,493.3 312,320.4 349,200 sses are within a 82737 59570.7 resses are within 172369	kPa °C °C °C °C skPa skPa kPa kPa	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi) SMYS x DF iits. OK Obtained from Table 3 Sfg x DF	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 ΔT component at max T2 ΔT component at max T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2min) Sa Effective street Sfg Girth weld str Sfl	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 0.3 97,879.8 349,908.1 18,860.0 186,755.0 -10,200.0 346,493.3 312,320.4 349200 sses are within a 82737 59570.7 resses are within 172369 124105.6	kPa °C °C °C °C °C °C °C °C °C °C	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi) SMYS × DF its. OK Obtained from Table 3 Sfg × DF its. Ok Obtained from Table 3	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$
Coeff thermal expansion Young's Modulus Steel Installation Temperature Max Operating Temperature ΔT component at max T2 ΔT component at max T2 ΔT component at max T2 Poisson's ratio of steel Possion's component Max Circumferential stress Max Longitudinal stress Max Radial stress Effective Stress Allowable Stress Check for Fatigue Girth fatigue endurance limit check for S-Lh < Sfg x DF	alpha Es T1 T2-max T2-min vs S1 S2 (T2max) S2 (T2min) S3 Seff (T2min) Sa Effective street Sfg Girth weld str Sfl	2.05E+08 21.0 60.0 -10.0 93,541.5 -74,353.5 97,879.8 349,908.1 188,675.0 -10,200.0 346,493.3 312,320.4 349,493.3 312,320.4 349,200 sses are within a 82737 59570.7 resses are within 172369	kPa °C °C °C °C °C °C °C °C °C °C	Obtained from Table A1 E*alpha*∆T E*alpha*∆T v(S-he + S-hi) SMYS × DF its. OK Obtained from Table 3 Sfg × DF its. Ok Obtained from Table 3	$\overline{S_2 = \Delta S_L - E_s \alpha_i (T_2 - T_1) + \nu_s (S_{He} + S_{Hi})}$ $\overline{S_3 = -P}$

DN1050 - Designated crossing - 1200mm Burial Depth - No Pavement, tandem axle

DN1050 - Designated crossing - 1500mm Burial Depth - No Pavement, tandem axle

Pipeline Conditions		
Type / OD (mm)	DN1050	1067.0
Pipe Grade / SMYS (MPa)	X70	485.0
Wall Thickness (tw)	18	mm
Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
Design Pressure (MAOP)	10.20	MPa
Buried Height	1500	mm
Design Factor	0.72	
Installation Temperature	21	°C
Max Operating Temperature	60	°C
Min Operating Temperature	-10	°C

 $\begin{tabular}{|c|c|c|c|} \hline Steel Properties \\ \hline Young's Modulus (E_s) & 205,000,000 & kPa \\ \hline Coefficient of Thermal Exp. (\alpha) & 1.17E-05 & per °C \\ \hline Poisson's Ratio (v_s) & 0.3 \\ \hline \end{tabular}$

Pipeline Options						
Trenched Construction?	Trenched					
Soil Type / Description		Soft to medium clays and silts with low to medium plasticities; loose sands and gravels				
Soil Unit weight	18.9	kN/m ³	Recommended value from RP1102: 18.9			
Pavement & Axle Type Wheel Pressue	No Pavement, 750	Tandem Axle kPa	e			

0.72 for designated crossing $\,$ or 0.90 for elsewhere as per AS2885.1-2007 Section 5.7.3 c)

For soil types Soft to medium clays and silts with high
plasticities & Soft to medium clays and silts with low to
medium plasticities; loose sands and gravels the
resilient modulus, Er, is assumed to be 34 MPa

Pipeline Results				
Cyclic Circular stress	S-Hh	20,644	kPa	
Cylic Long stress	S-Lh	13,158	kPa	
Circular stress	S-Hi	297,217	kPa	
Effective Stress	Seff (T2max)	347,217	kPa	
	Seff (T2min)	312,810	kPa	
ALLOWABLE STRESS		349,200	kPa	
				% of Allowable / Limit
Effectiv	e stresses are within a	allowable lim	nits.	99.4
Girth w	eld stresses are within	n fatigue lim	its.	22.1
Longitudin	al weld stresses are w	ithin fatigue	limits.	16.6

Seff (T2min)

Sa

Allowable Stress

Check for Fatigue

Girth fatigue endurance limit Sfg

Long fatigue endurance limit Sfl

check for S-Lh < Sfg x DF

check for S-Hh < Sfl x DF

312,809.6 kPa

Effective stresses are within allowable limits.

82737

59570.7

Girth weld stresses are within fatigue limits.

172369

124105.6

Longitudinal weld stresses are within fatigue limits.

349200 kPa

kPa

kPa

kPa

kPa

SMYS x DF

Sfg x DF

Г ok

Obtained from Table 3

Obtained from Table 3

ok

ok

RP1102 Road Crossing Calculation RP1102 Calculated/Input Data Input Data MAOP MPa Design Pressure 10.20 Trenched Construction/Other ? Trenched Pipe Material X70 H/Bd 1.41 Yield Strength SMYS 485 MPa tw/D 0.017 Outside Diameter D 1067 mm Bd 1067 mm D + 51mm if unknown, if trenched Bd = D Bd/D 1.00 Wall thickness tw 18 mm SMLS / ERW Pipe Type **Buried Height** н 1500 mm No Pavement, Tandem Axle Tandem Select pavement type and hence axle configuration from Table 1 DF DF - for allowable stress 0.72 R 11 Select from Table 2 0/_ Select from Table 2 RP 1102 Soil Data Soil Type Soft to medium clays and silts with low to medium plasticities; loose sands and gravels Soil Reaction Mod E' MPa Recommended value from RP1102 Soil Unit weight 18.9 kN/m3 y Er Soil Resilient Mod MPa 34 Assumption based upon soil type $K_{He} = f\left\{\frac{t_w}{D}, E'\right\}$ $B_e = f\left\{\frac{H}{B_d}\right\}$ $E_e = f\left\{\frac{B_d}{B_d}\right\}$ Earth Load Circ stiffness factor K-he 3819 49 Obtained from figure 3 Earth Burial factor Be 0.4239 Soil A Obtained from figure 4 Earth Excavation factor Ee Obtained from figure 5 1.0000 Earth Load S-he 32649.1 kPa Live Load Ра 0 tonnes/axle Value used to determine design wheel load. If chosen value results in design wheel load < 80kN, 80kN is used in accordance with recommendation in AS2885.1 V4 Axle Load Tandem axle wheel load 0 Pt tonnes insert value if known Single axle wheel load tonnes Ps 0 insert value if known Р 750 Design wheel load kΝ Based on selection of tandem or single per above Wheel contact area Ap 0 m2 Default figure is from RP1102 (0.093m2), user can select otherwise 750.0 Live Load kPa w Impact Factor Fi 1.5 DLA: Default calculated based on Figure 7 for highways, else use DLA (refer App W of DR04561) 1.5 **Highway Cyclic Stresses** Circ Highway stiff factor K-Hh 20.46 Obtained from figure 14 Circ Highway Geo factor G-Hh 0.82 Obtained from figure 15 Cyclic Circ stress S-Hh 20643.9 kPa $K_{Hh} = f\left\{\frac{t_w}{D}, E_r\right\}$ Long Highway stiff factor K-Lh 14,7770 Obtained from figure 16 0.7195 Long Highway Geo factor G-Lh Obtained from figure 17 Cylic Long stress S-Lh 13157.6 kPa $S_{H} = \frac{P(D - t_{w})}{2t_{w}}$ Internal Pressure Stress Circ stress S-Hi 297216.6667 kPa **Check for Allowable Stresses** Coeff thermal expansion alpha 1.2E-05 per °C Obtained from Table A1 Young's Modulus Steel 2.05E+08 . kPa Es Obtained from Table A1 Installation Temperature Τ1 21.0 °C Max Operating Temperature T2-max °С 60.0 Min Operating Temperature T2-min °С -10.0 ΔT component at max T2 93,541.5 kPa E*alpha*∆T ΔT component at min T2 -74,353.5 kPa E*alpha*∆T Poisson's ratio of steel vs 0.3 98,959.7 kPa Possion's component v(S-he + S-hi) $S_1 = S_{He} + \Delta S_{Hh} + S_{Hi}$ Max Circumferential stress **S1** 350.509.7 kPa S2 (T2max) 18.575.8 kPa Max Longitudinal stress $S_{2} = \Delta S_{L} - E_{s} \alpha_{t} (T_{2} - T_{1}) + v_{s} (S_{He} + S_{Hi})$ S2 (T2min) 186,470.8 kPa Max Radial stress -10,200.0 kPa $S_{3} = -P$ S3 Effective Stress Seff (T2max) 347.217.3 kPa $S_{eff} = \sqrt{\frac{1}{2} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right]}$

29/09/2011

DN1050 - Designated crossing - 1500mm Burial Depth - No Pavement, tandem axle

Guidlines for the Design of Buried Steel Pipe, Pipeline Road Crossing Calculation

DN1050 - Occasional Crossing - 750mm Burial Depth - No Pavement, single axle

Pipeline Conditions		
Type / OD (mm)	DN1050	1067.0
Pipe Grade / SMYS (MPa)	X70	485.0
Wall Thickness (tw)	16.8	mm
Pipe Type (Seamless / ERW / SAW)	SMLS / ERW	
Design Pressure (MAOP)	10.20	MPa
Buried Height	750	mm
Design Factor	0.9	
Installation Temperature	21	°C
Max Operating Temperature	60	°C
Min Operating Temperature	-10	°C

Steel Properties		
Young's Modulus (E _s)	205,500,000	kPa
Coefficient of Thermal Exp. (α) Poisson's Ratio (v_s)	1.17E-05 0.3	per °C

Pipeline Options				
Axle Type		Sin	gle	
Axle Spacing	0	mm		The spacing between axles in the axle set for tandem and triple axles.
Soil Type / Description	Soft to mediur plasticities; loc		ilts with low to medium d gravels	For soil types Soft to medium clays and silts with high plasticities & Soft to medium clays and silts with low to
Soil Unit weight	18.9	kN/m ³		medium plasticities; loose sands and gravels the resilient modulus, Er, is assumed to be 34 MPa
Design wheel load (Ps)	80	kN	Recommended value from AS2885: 80	
Height of water table above pipe (hw)	0	m	0<=hw<=depth of cover	

Pipeline Results				
Circumferential stress	S-c	241,192	kPa	
Longitudinal stress	S-I (T2 max)	-3,632	kPa	
Longitudinal stress	S-I (T2 min)	-171,527	kPa	
Radial stress	S-r	-10,200	kPa	
Effective Stress	Seff (T2max)	248,174	kPa	
	Seff (T2min)	360,251	kPa	
ALLOWABLE STRESS		436,500	kPa	
				% of Allowable / Limit
Effective pi	pe stress is within the a	Ilowable pip	e stress	82.5
	Ring Buckling Stress C	heck		99.5

ok

Guidelines for the Design of B	uried Steel Pipe	Calculation		DN1050 - Occasional Crossing - 750mm Burial Depth - No Pavement, single axle
Input Data				Calculated/Input Data
-		10000.00	1	
Design Pressure	MAOP	10200.00	kPa	
Pipe Material		X70	ł	twD 0.016
Yield Strength	SMYS	485	MPa	D/C 1.423
Outside Diameter	D	1.067	m	C/D 0.7029053 $I = \frac{t^2}{12}$
Outside Radius	R	0.5335		I 3.951E-07 m ³ I ² Assume (El)eq = El as this is more conservative and the
Wall thickness	tw	16.8	mm	(El)eq 81.00 kN.m $(EI)_{eq} = EI + E_L I_L + E_C I_C$ coating and lining stiffenesses are assumed to be small
Pipe Type		SMLS / ERW		Rw 1 - $(II)_{eq} = II + I_L I_L + I_C I_C$ compared to the pipe
Buried Height	С	0.750	m	
DF - for allowable stress	DF	0.9		
Design wheel load	Ps	80	kN	80kN is used in accordance with recommendation in AS2885.1 V4
Deflection lag factor	DI	1.5		
		0.1	1	
Bedding constant	К	0.1	-	
0 11 1		1 05 05		
Coeff thermal expansion	alpha	1.2E-05	per °C	
Young's Modulus Steel	Es	2.05E+08	kPa	
Installation Temperature	T1	21.0	°C	
Max Operating Temperature	T2-max	60.0	°C	
Min Operating Temperature	T2-min	-10.0	°C	
Poisson's ratio of steel	v	0.3	-	
			-	
BB 1103 Soil Data				
RP 1102 Soil Data		0.0.0		
Soil Type				s with low to medium plasticities; loose sands and gravels
Soil Reaction Mod	Ε'	3400	kPa	2
Soil Unit weight	У	18.9	kN/m3	Recommended value from RP1102
Soil Resilient Mod	Er	34	MPa	Assumption based upon soil type
			_	
Earth Load				
Earth Load	Pv	14.18	kPa	$P_{\rm v} = \gamma C$
Editifiedd			ia a	$T_y = \gamma C$
Applied Surface Load				3.0
••	-	4.45		$P_{\rm p} = \frac{3P_{\rm S}}{2}$
Impact Factor	F'	1.15		Impact Factor obtained from Appendix B3
Offset Tandem surface load	Po2	0		$P_{p} = \frac{3P_{S}}{2\pi C^{2} \left[1 + \left(\frac{d}{C}\right)^{2}\right]^{2.5}}$ Impact Factor obtained from Appendix B3
Offset Triple surface load	Po3	0		
Total surface Load	Рр	78.09202541	kPa	NOTE: Variable d in the applied surface load equation is assumed to be 0 for a single
				axle as this gives a more conservative calculation.
Ovality				
Combined pressure on pipe	Pc	92.27	kPa	
Ovality	dy/D		-	$\Delta y = D_k K P$
ovany	uj, D	0.01000121		$\frac{\Delta y}{D} = \frac{D_l KP}{\left(\frac{ EI _{q}}{R^{2q}} + 0.061E^{*}\right)}$
				R
Through-Wall Bending Stress				
	<u>.</u>	044400	LD a	$-(\Delta \mathbf{v})(\mathbf{t})$
Circumferential Stress	S-c	241192	kPa	$\sigma_{bw} = 4E\left(\frac{\Delta y}{D}\right)\left(\frac{t}{D}\right)$
Ring Buckling Check				
Factor of safety	FS	3	-	$B^{*} = \frac{1}{2}$
Empirical coefficient of elastic				$B' = \frac{1}{1 + 4e^{(-\cos\frac{C}{D})}}$
support	B'	0.21	-	
Buckling vertical pressure load				$1 \qquad (EI)_{eq}$
limit		408.90	kPa	The vertical pressure load is below the buckling limit $\frac{1}{FS}\sqrt{32R_WB'E'\frac{(EI)_{eq}}{D^3}}$
		400.00		FSV D^3
Longitudinal Stress				
Longitudinal Stress	с ь	202040 74 /2	LD-	S = DD / (24)
Hoop Stress	S-h	323910.7143	kPa	$S_{\rm H} = PD / (2t)$
Longitudinal Stress (T2 max)	S-I (T2max)	-3631.7	kPa	
Longitudinal Stress (T2 min)	S-I (T2min)	-171526.7	kPa	$\sigma_c = E\alpha (T_2 - T_1) - v\sigma_h$
Radial Stress				
Circ stress	S-r	-10200.00	kPa	$S_3 = -P$
Check for Allowable Stresses				
Max Circumferential stress	S-c	241,192.5	kPa	S1
Max Longitudinal stress	S-C S-I (T2max)	-3,631.7		$\begin{bmatrix} S_1 \\ S_2 \\ T_2 \\ max \end{bmatrix}_{C} = \begin{bmatrix} 1 \\ (C \\ S_2)^2 \\ (C \\ S_2)^2 \\ (C \\ S_2)^2 \\ (C \\ S_2)^2 \end{bmatrix}$
mar Longitudinal Siless	S-I (T2min)	-171,526.7		$\begin{bmatrix} S_2 (T2 \text{ max}) \\ S_2 (T2 \text{ min}) \\ S_2 (T2 \text{ min}) \end{bmatrix} S_{eff} = \sqrt{\frac{1}{2} \left[(S_1 - S_2)^2 + (S_2 - S_3)^2 + (S_3 - S_1)^2 \right]}$
May Dadial atra : -				
Max Radial stress	S-r	-10,200.0	кРа	S3 V2
	o <i>u =</i> -			
Effective Stress	Seff (T2max)	248,173.5		
	Seff (T2min)	360,251.0	kPa	
				_

Sa 436500 kPa SMYS x DF Effective stres<mark>ses are within a</mark>llowable limits. Ok

Allowable Stress

Appendix F Pipeline Preliminary Walk Through

ocation (Approx KP)	Primary Location Class	Location Class (if applicable)	Predominant Land Use and Other Features	Feature
BP Pipeline				
AB - 0.8	R1		Grazing	Track crossing
AB - 4.5	R1		Grazing	Minor Watercourse - Cerito Creek
AB - 11.8	R1		Grazing	U/G water line
AB - 12.2	R1		Grazing	Minor Watercourse - Sutter Creek
AB - 20.0	R1		Grazing	Track crossing
AB - 22.0	R1		Grazing	Track crossing
AB - 26.8	R1		Grazing	Track crossing
AB - 27.2	R1		Grazing	Minor Watercourse p/I crossing
AB - 34.8	R1		Grazing	Sutter Development Rd crossing
AB - 35.5	R1		Grazing	Lenton Downs Rd crossing
AB - 36.8	R1		Grazing	Lenton Downs Rd crossing
AB - 46.7	R1		Grazing	Rd crossing
AB - 50.2	R1		Grazing	Major Watercourse - Isaac River crossing
AB - 50.5	R1		Grazing	Major Watercourse crossing
AB - 52.7	R1		Grazing	Track crossing
AB - 58.3	R1		Grazing	Track crossing
AB - 59.2	R1		Grazing	Track crossing
AB - 68.2	R1		Grazing	Track crossing
AB - 70.1	R1		Power Lines In Proximity	Powerlines crossing
AB - 73.5	R1		Mine Road	Burton Coal easement/rd
AB - 76 - 77	R1	н	Mining Lease	Ellensfield Mining Lease, Vale Petroleum Lease - active
AB - 76.9	R1		Power Lines In Proximity	Petroleum Lease - active Powerline crossing
AB - 77.9	R1		Power Lines In Proximity	Powerline re-crossing
AB - 81 - 85.6	R1		Power Lines In Proximity	Powerline runs parallel
AB - 81.8	R1		Petroleum Lease	Adjacent csg well
AB - 89	R1		Petroleum Lease	Adjacent csg well
AB - 90	R1		Grazing	Railway & water p/line crossing
AB - 90 - 93	R1		Grazing	Parallel water p/line
AB - 92.3	R1		Grazing	Goonyella branch rail line & water
AB - 95	R1		Grazing	p/line crossing Peak Downs Highway crossing
AB - 95	R1		Grazing	Homestead ~ 2km west
phinstone Lateral	KP's from North End		Agricultural	Start of Elphinstone lateral, Lake
0	K I		ngincultural	Start of Elphinstone lateral, Lake Elphinstone ~ 2km west
2.8	R1		Agricultural	??Water pond ??adjacent
- 3 - 6 ??	R1		Mining Lease	Mitsubishi Coal // & 2km east

EL - 13	R1		Power Lines In Proximity	Powerline Crossing
EL - 14.9	R1		Agricultural	unnamed road reserve crossing
EL - 19.9	R1		Agricultural	Carborough Range - unnamed road reserve
EL - 25.2	R1		Agricultural	Track crossing
EL - 25.7	R1		Agricultural	Track crossing
EL - 28.1	R1		Agricultural	Track crossing
EL - 28.3	R1		Agricultural	Track end?
EL - 30.2	R1		Agricultural	adjacent SW7 csg wellsite (<100m)
EL - 35.2	R1		Agricultural	Track crossing
EL - 35.8	R1		Agricultural	Track crossing
EL - 45 - 46	R1		Mining Lease	parellel to Coppabella m/lease (~1km east)
EL - 46.7	R1		Agricultural	Track crossing
EL - 46.9	R1		Other Pipeline in Vicinity	U/G Water line
EL - 47	R1		Industrial	Railway - Goonyella branch
EL - 47.7	R1		Power Lines In Proximity	Powerline crossing
EL - 47.8 - 48.5	R1		Power Lines In Proximity	Parallel Powerlines < 100m
EL - 48.5 - 52	R1		Grazing	Petroleum lease to end of lateral
EL - 52	R1		Grazing	Joins ABP mainline
AB - 95-97				Possible cultivation over the pipeline
AB - 95.9	R1		Grazing	Elphinstone Lateral
AB - 99.3	R1		Grazing	Easement crossing
AB - 100 - 101	R1		Other Pipeline in Vicinity	Coppabella p/line. P/line crosses road easement twice
AB - 101	R1		Mining Lease	Norwich Park branch rail line
AB - 101.9	R1		Mining Lease	Rd crossing
AB - 103 - 105	R1		Grazing	Large road easement runs parallel
AB - 107	R1		Grazing	Road reserve crossing
AB - 105.1	R1		Grazing	Minor Watercourse - North Creek crossing
AB - 106.8 - 107	R1		Grazing	Rd reserve crossing
AB - 109.3	R1		Grazing	Annandale rd crossing
AB - 111.5	R1		Grazing	Olive Downs B Haul road crossing?
AB - 111.8	R1		Grazing	Track crossing
AB - 112	R1		Grazing	Annandale rd crossing
AB - 119	R1		Grazing	Annandale rd crossing
AB - 122.3	R1		Grazing	Track crossing
AB - 125.3	R1		Grazing	Track crossing
AB - 126	R1		Grazing	Track crossing
I		ļ	I	

AB - 127	R1	Grazing	Track crossing
AB - 129.1	R1	Grazing	Track crossing
AB - 129.8	R1	Grazing	Track crossing
AB - 132	R1	Grazing	??east 400m??
AB - 132.5	R1	Grazing	Track crossing
AB - 133	R1	Grazing	??east???
AB - 137	R1	Grazing	??east???
AB - 137	R1	Grazing	Annandale rd crossing
Saraji Lateral KP's f	R1	Agricultural	Start of Duncht Internal
SL - 0	K1	Agricultural	Start of Dysaht lateral
SL - 0.5	R1	Other Pipeline in Vicinity	CQP p/I crossing
SL - 3.1 - 6.7	R1	Mining Lease	Mining Development Licence
SL - 7.5	R1	Agricultural	Track crossing
SL - 13 - 14	R1	Grazing	lateral runs along track
SL - 16	R1	Grazing	Track crossing
SL - 18.8	R1	Grazing	Major Watercourse - Isaac River crossing
SL - 19.7	R1	Grazing	Track crossing
SL - 25.8	R1	Grazing	joins ABP main line
AB - 137.2	R1	 Grazing	Saraji Lateral
AB - 142 - 152	R1	Grazing	Fitzroy Development Rd runs parallel
AB - 145.2	R1	Grazing	Track crossing
AB - 151.6	R1	Grazing	Track crossing
AB - 151 - 152	R1	Grazing	?? What't this??
AB - 157	R1	Grazing	Track crossing
AB - 159.2	R1	Grazing	Track crossing
AB - 161.2	R1	Grazing	Track crossing
AB - 164.6	R1	Grazing	Major Watercourse - Isaac River
AB - 165	R1	Grazing	Homestead ~2km west
AB - 165.5	R1	Grazing	Carfax rd crossing
AB - 170.2	R1	Grazing	Track crossing
AB - 170.3	R1	Grazing	Minor Watercourse - Stephens Creek crossing
Dysaht Lateral KP's	from West End		
DL - 0	R1	Agricultural	Start of Dysaht lateral
	R1	Agricultural	On Golden Mile Road alignment
DL - 0 - 15			
DL - 0 - 15 DL - 0	R1	Other Pipeline in Vicinity	CQP 1km south west of Dysaht lateral start

DL - 2.2	R1		Grazing	Bowen Norwich Park CSG p/lease - start
DL - 3.7	R1		Grazing	Track start
DL - 6	R1		Grazing	CSG wellhead - on alignment
DL - 7.3 - 14.1	R1		Mining Lease	Mining Development Licence
DL - 10.6	R1		Mining Lease	??? > 300m s/west???
DL - 12	R1		Mining Lease	Track crossing
DL - 15.3	R1		Grazing	Track crossing
DL - 16.5	R1		Grazing	Track crossing
DL - 17.1	R1		Grazing	Minor Watercourse - Stephens
DL - 20.2	R1		Grazing	Creek crossing Track crossing
DL - 20.2 - 25.7	R1		Grazing	lateral runs along Fitroy
				Development Road
DL - 25.7	R1		Grazing	end of Dysaht Lateral
AB - 172.7	R1		Grazing	Dysaht Lateral
AB - 173	R1		Grazing	Fitzroy Development Road crossing
AB - 180.5	R1		Grazing	Track crossing
AB - 189.5	R1		Grazing	Track crossing
AB - 193.3	R1		Grazing	Track crossing
AB - 194.8	R1		Grazing	Track crossing
AB - 195.5	R1		Grazing	May Downs Carfax road
AB - 196	R1		Grazing	Track crossing
AB - 201.5	R1		Grazing	Track crossing
AB - 205.2	R1		Grazing	Track crossing
AB - 205.7	R1		Grazing	Track crossing
AB - 206	R2		Grazing	Langley Homestead ~ 2km south
AB - 210.9	R1		Grazing	west Track crossing
AB - 211.9	R1		Grazing	Track crossing
AB - 212.9	R1		Grazing	Major Watercourse - Rolf Ck (Isaac River) crossing
AB - 228.1	R1		Grazing	May Downs road crossing
AB - 234	R1		Grazing	Track crossing
AB - 234.7	R1		Grazing	Major Watercourse - Isaac River
AB - 238.5	R1		Grazing	crossing (caused a 90deg kink - non-
AB -239.7	R1		Grazing	perren??) watercourse ??Similar?? Watercourse
AB - 245	R2		Grazing	Clive Homestead ~ 2km north east
AB - 245.9	R1		Grazing	Track crossing
AB - 253.5	R1		Power Lines In Proximity	Powerline crossing
AB - 254.7	R1		Petroleum Lease	Manly Access Road crossing
2017				, and the second

AB - 262.2	R1		Grazing	Track crossing
AB - 263.7	R1		Grazing	Tartrus Road crossing
AB - 265 - 271	R1		Other Pipeline in Vicinity	AGL p/line < 1km away running
AB - 276 - 277	R1		Grazing	parallel Track parallel / crossing
AB - 271 - 278	R1		Other Pipeline in Vicinity	AGL p/line 200-300m away, running
AB - 278 - 349	R1		Other Pipeline in Vicinity	parallel AGL p/line < 1km away, running
AB - 279	R1		Grazing	parallel Track crossing
AB - 280	R1		Grazing	unnamed rd reserve crossing
AB - 281.5	R1		Grazing	Track crossing
AB - 282.2	R1		Grazing	unnamed rd reserve crossing
AB - 284.7	R1		Grazing	Duaringa Apis Ck rd crossing
AB - 289.7 - 291.8	R1		Grazing	Apis Ck Stud Holding rd runs parallel
AB - 293	R1		Grazing	Track starts
AB - 293 - 299	R1		Grazing	Track runs parallel
AB - 300.2	R1		Grazing	Track crossing
AB - 301.8	R1		Grazing	Track crossing
AB - 302.3	R1		Grazing	Track crossing
AB - 303.3	R1		Grazing	Track crossing
AB - 303.8	R1		Power Lines In Proximity	Powerline crossing
AB - 304.1	R1		Other Pipeline in Vicinity	AGL P/line crossing
AB - 306.5	R1		Grazing	Track crossing
AB - 308.1	R1		Grazing	Track crossing
AB - 310.1	R1		Other Pipeline in Vicinity	AGL P/line crossing
AB - 310.1	R1		Grazing	Morbank Rd crossing
AB - 311.3	R1		Grazing	Morbank Rd runs parallel
AB - 316.7	R1		Grazing	Genroy Marlborough Rd crossing
AB - 316.5	R1		Other Pipeline in Vicinity	AGL P/line crossing
AB - 319.5	R1		Grazing	Major Watercourse - Fitzroy River crossing
AB - 322.2	R1		Grazing	Unnamed rd reserve crossing
AB - 324	R1		Grazing	Redbank Homestead 500m NE
AB - 324.4	R1		Grazing	Unnamed road reserve crossign
AB - 327.8	R1		Grazing	Track starts
AB - 328.3	R1		Grazing	Rd reserve crossing
AB - 329.2	R1		Other Pipeline in Vicinity	Marlborough Nickel's Gladstone Nickel Project p/line crossing
AB - 329.2 - 407.5	R1		Other Pipeline in Vicinity	Gladstone Nickel Project p/line runs approx parallel
AB - 338	R1		Grazing	Fairview Rd crossing
I		l	I	

AB - 341	R1		Grazing	Rd reserve crossing
AB - 313.1 - 313.3	R1		Grazing	unnamed rd reserve crossing
AB - 344.1	R1		Grazing	Marble Ridges rd crossing
AB - 349.2	R1		Grazing	unnamed rd reserve crossing
AB - 351.1	R1		Grazing	Glenroy Rd crossing
AB - 354.6	R1		Power Lines In Proximity	Powerline easement crossing
AB - 355.9	R1		Grazing	Craignought Rd crossing
AB - 356.1	R1		Grazing	unnamed rd crossing
AB - 357.6	R1		Grazing	unnamed rd crossing
AB - 357.9	R1		Grazing	Morinish Rd crossing
AB - 360.2	R1		Grazing	unnamed rd crossing
AB -365.4	R1		Grazing	Dahua Ridgelands Rd crossing
AB - 368.3	R1		Grazing	(temp closed) rd crossing
AB - 370.1	R1		Grazing	unnamed rd crossing
AB - 370.3	R1		Grazing	unnamed rd crossing
AB - 371.1	R1		Grazing	unnamed rd crossing
AB - 373	R1		Grazing	unnamed rd crossing
AB - 375.2	R1		Grazing	Harding Road crossing
AB - 379.9	R1		Grazing	Tucker Road + unnamed rd crossing
AB - 380	R1		Grazing	track crossing
AB - 382.5	R1		Grazing	Cunningham Road & track crossing
AB - 384	R1		Grazing	unnamed rd crossing
AB - 385	R1		Grazing	unnamed rd crossing
AB - 387.2	R1		Grazing	Above ground water p/line crossing
AB - 390.7	R1		Grazing	Hopper Rd crossing
AB - 391.3	R1		Grazing	Minor Watercourse - Scrubby Ck & Neercol Ck crossing
AB - 391.8	R1		Grazing	Kabra Scrubby Ck Rd crossing
AB - 392.2	R1		Grazing	Freehold Land ???
AB - 392.8	R1		Grazing	Capricorn H/way crossing
AB - 393	R1		Grazing	Railway Crossing
AB - 393.1	R1		Grazing	Somerset Rd crossing
AB - 395	R1		Grazing	Boongarry Rd crossing
AB - 395.1	R1		Other Pipeline in Vicinity	Stanwell Gas P/line crossing
AB - 395.3	R1		Grazing	unnamed rd reserve crossing
AB - 398.3	R1		Grazing	unnamed rd reserve crossing
AB - 400.1	R1		Grazing	unnamed rd reserve crossing
I		l	l	

1	AB - 402.1	R1		Other Pipeline in Vicinity	P/line crossing
	AB - 402.5	R1		Other Pipeline in Vicinity	P/line crossing
	AB - 402.8	R1		Grazing	Minor Watercourse - 4 Mile Ck &
	AB - 402.9	R1		Grazing	unnamed road crossing Track crossing
	AB - 404	R1		Grazing	unnamed rd crossing
				-	
	AB - 404.9	R1		Grazing	Burnett Highway crossing
	AB - 407.2	R1		Grazing	unnamed rd reserve crossing
	AB - 407.5	R1		Other Pipeline in Vicinity	Gladstone Nickel Project P/line end
	vKP 408.7	R1		Other Pipeline in Vicinity	AGL Jemena Gladstone - Rockhampton P/line crossing
	AB - 408.7 - 411.1	R1		Other Pipeline in Vicinity	AGL Jemena Gladstone - Rockhampton P/line runs parallel
	AB - 409	R1		Grazing	unnamed rd crossing
	AB - 410.8	R1		Grazing	Mogilno Rd crossing
	AB - 412.5	R1		Grazing	McLean Rd crossing
	AB - 414	R1		Grazing	Bob's Creek Rd crossing
	AB - 416.4	R1		Grazing	Bruce Highway crossing
	AB - 416.5	R1		Grazing	North Coast Railway Line crossing
	AB - 418	R1		Grazing	Archer - 1km West
	AB - 421.4	R1		Grazing	unnamed rd / small w/course crossing
	AB - 427.6	R1		Grazing	C Q Salt Railway Siding crossing
	AB - 430	R1		Grazing	Minor Watercourse - Inkerman
	AB - 431.4	R1		Grazing	Creek crossing Bajool - Pt Alma Rd crossing
	AB - 433	R1		Grazing	Toonda - Pt Alma Rd crossing
	AB - 436.7	R1		Grazing	unnamed rd crossing
	AB - 438.2	R1		Grazing	unnamed rd crossing
	AB - 438.8	R1		Grazing	Twelve Mile Road crossing
	AB - 442.2	R1		Grazing	Twelve Mile Road crossing
	AB - 445	R2		Grazing	Raglan area
	AB - 446.7 - 446.8	R2		Grazing	Minor watercourse - Raglan Ck
	AB - 450	R1		Grazing	crossing unnamed road crossing
	AB - 452.2	R1		Grazing	unnamed road crossing
	AB - 455	R2		Grazing	Reedy Creek Road crossing
				-	
	AB - 455 to 460.3	R2		Grazing	runs parallel to Raglan Station Road
	AB - 461 - 463	R2		Grazing	North of Ambrose
	AB - 462	R1		Grazing	Darts Creek Road crossing
	AB - 462.5	R1		Other Pipeline in Vicinity	CQP p/line crossing
	AB - 462.9 - 464	R1		Power Lines In Proximity	Powerline crossing & running parallel
			•	1	

AB - 465.5	R1		Grazing	Popenia Road crossing
AB - 467	R2		Grazing	start of Mt Larcom area
AB - 467.5	R2		Grazing	Gostevsky Road crossing
AB - 469.7	R2		Grazing	Narrows Road crossing
AB - 469.9	R2	Industrial	Other Pipeline in Vicinity	CQP p/line crossing
AB - 470.3	R2	Industrial	Other Pipeline in Vicinity	Santos GLNG P/line crossing
AB - 470.4	R2	Industrial	Other Pipeline in Vicinity	QCLNG P/line crossing
AB - 470.4	R2	Industrial	Other Pipeline in Vicinity	APacLNG P/line crossing
AB - 471 - 476	R2	Industrial	Other Pipeline in Vicinity	
AB - 471	R2	Industrial	Other Pipeline in Vicinity	Railway crossing
AB - 476.1	R2	Industrial	Other Pipeline in Vicinity	CQP P/line crossing
AB - 478	R2	Industrial	Other Pipeline in Vicinity	end of p/line
AB - 418 - end	R2	Industrial	Petroleum Lease	SGIC Corridor
AB - 469.5 - end	R2	Industrial	Petroleum Lease	GSDA Corridor
AB - 329- 407.9	R2	Industrial	Petroleum Lease	Marlborough Nickel Corridor

Appendix G General Action Items Closed Out

Memorandum

04 October 2011

То	Ian Grimmer		
Copy to	Iain Burgess		
From	Rubi Turna	Tel	(07) 3316 3271
Subject	ABP Initial SMS General Actions Closed Out	Job no.	41/24306

As per Table 6 in Section 7 of the ABP Initial SMS Report (08-ABP-02-0006 Rev C), the following general actions assigned to GHD have been closed out.

Item #	General Action	Comment	Status
1	Railway depth of cover - measured from bottom of ballast?	Railway depth of cover is measured from bottom of rail not ballast as per API 1102.	Completed
2	Specify minor and major watercourse crossings in the pipeline walk through.	Refer to Appendix F of ABP Initial SMS Report (08-ABP-02-0006 Rev C).	Completed
22	Calculate the overlap of measurement lengths in T1 and Sensitive location class zones.	T1 location class runs from AB 446 – 469 km. The S location class is located at AB 465.	Completed
		For a DN 800 pipe size the measurement length is 1.1 km which gives an overlap distance of 463.9 to 466.1 km.	
		For a DN 1050 pipe size the measurement length is 1.25 km which gives an overlap distance of 463.75 to 466.25 km.	
24	Investigate operating pressures for slurry pipelines to further consider threats posed to adjacent gas pipelines.	The Marlborough Nickel slurry pipeline is classified as high pressure however unable to ascertain exact pressure.	Unable to ascertain

25	GHD to determine frequency of DCVG surveys for detecting latent defects from third party impact.	Frequency of DCVG surveys are based on the result of CPU test readings and at the discretion of the operator. In some cases, DCVG surveys on similar size pipelines have been conducted on a yearly basis.	Completed
27	Try to find photo of lightning strike.	Occurred on the Amadeus Basin Pipeline.	Unable to locate

Regards

Rubi Turna

Pipeline Engineer

GHD 2011

201 Charlotte Street Brisbane QLD 4000 GPO Box 668 Brisbane QLD 4001 T: (07) 3316 3000 F: (07) 3316 3333 E: <u>bnemail@ghd.com.au</u>